首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Pontogeniculooccipital (PGO) waves are recorded during rapid eye movement (REM) sleep from the pontine reticular formation, lateral geniculate bodies, and occipital cortex of many species. 2. PGO waves are associated with increased visual system excitability but arise spontaneously and not via stimulation of the primary visual afferents. Both auditory and somatosensory stimuli influence PGO wave activity. 3. Studies using a variety of techniques suggest that the pontine brain stem is the site of PGO wave generation. Immediately prior to the appearance of PGO waves, neurons located in the region of the brachium conjunctivum exhibit bursts of increased firing, while neurons in the dorsal raphe nuclei show a cessation of firing. 4. The administration of pharmacological agents antagonizing noradrenergic or serotonergic neurotransmission increases the occurrence of PGO waves independent of REM sleep. Cholinomimetic administration increases the occurrence of both PGO waves and other components of REM sleep. 5. Regarding function, the PGO wave-generating network has been postulated to inform the visual system about eye movements, to promote brain development, and to facilitate the response to novel environmental stimuli.  相似文献   

2.
Fractionations are 20- to 100-ms pauses indiaphragm activity that occur spontaneously during rapid-eye-movement(REM) sleep, sometimes in association with pontogeniculooccipital (PGO)waves. Auditory stimuli can elicit fractionations or PGOwaves during REM sleep, non-REM (NREM) sleep, and waking; however,their interrelationship has not been investigated. To determine whetherthe two phenomena are produced by a common phasic-event generator inREM sleep, we examined PGO waves and fractionations that were elicitedby auditory stimuli (tones) presented to freely behaving cats across states. Tones elicited PGO waves and two types of fractionations: short-latency fractionation responses (SFRs; 10- to 60-ms latencies) and long-latency fractionation responses (LFRs; 60- to 120-ms latencies). Both a PGO wave and a SFR were elicited in60-70% of trials across states, but each could be elicited alone.The latencies and durations of elicited SFRs were similar acrossstates, but the latencies of elicited PGO waves in REM sleep (mean 62.5 ms) were significantly longer than in waking or NREM sleep. Elicited SFRs consistently occur with shorter latencies than do PGO waves, incontrast to spontaneous fractionations, which have a variable relationship to PGO waves and usually occur 10-40 ms after the onset of the PGO wave. The LFR then, elicited mostfrequently during REM sleep, resembles a spontaneous fractionation inits temporal relationship to the PGO wave and may reflect the bias toward motoneuronal inhibition characterizing REM sleep but not NREMsleep or waking. We conclude that, although PGO waves and SFRs sharesome features, like LFRs they probably are generated by differentneuronal populations. In three cats there was no correlation betweenPGO waves and fractionations, whereas in one cat they were associatedin REM sleep (LFRs and SFRs) and waking (SFRs only). Thus the majorityof evidence argues against the existence of a common phasic-eventgenerator in REM sleep.

  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) has heterogeneous clinical features that could be translated into specific patterns of brain atrophy. In the current study we have evaluated the relationship between different clinical expressions of classical ALS and measurements of brain cortical thickness. Cortical thickness analysis was conducted from 3D-MRI using FreeSurfer software in 29 ALS patients and 20 healthy controls. We explored three clinical traits of the disease, subdividing the patients into two groups for each of them: the bulbar or spinal onset, the higher or lower upper motor neuron burden, the faster or slower disease progression. We used both a whole brain vertex-wise analysis and a ROI analysis on primary motor areas. ALS patients showed cortical thinning in bilateral precentral gyrus, bilateral middle frontal gyrus, right superior temporal gyrus and right occipital cortex. ALS patients with higher upper motor neuron burden showed a significant cortical thinning in the right precentral gyrus and in other frontal extra-motor areas, compared to healthy controls. ALS patients with spinal onset showed a significant cortical thinning in the right precentral gyrus and paracentral lobule, compared to healthy controls. ALS patients with faster progressive disease showed a significant cortical thinning in widespread bilateral frontal and temporal areas, including the bilateral precentral gyrus, compared to healthy controls. Focusing on the primary motor areas, the ROI analysis revealed that the mean cortical thickness values were significantly reduced in ALS patients with higher upper motor neuron burden, spinal onset and faster disease progression related to healthy controls. In conclusion, the thickness of primary motor cortex could be a useful surrogate marker of upper motor neuron involvement in ALS; also our results suggest that cortical thinning in motor and non motor areas seem to reflect the clinical heterogeneity of the disease.  相似文献   

4.
Spontaneous electrocorticogram (ECoG) was recorded in frontal (sensorimotor) temporal (auditory) and occipital (visual) cortical regions of 86 male rats (immobilized with d-tubocurarine) aged from 3 days to adulthood. Activity which could be classified as ECoG was for the first time recorded in 5-day-old rats; it was formed by groups of slow waves with unstable frequency intermingled with periods of isoelectric line. Discontinuous ECoG activity was regularly registered even in 10-day-old rats, exceptionally in 12-day-old rats. During further maturation of the continuous ECoG an increase in frequency and an establishment of a basic rhythmic activity synchronous over both hemispheres took place, so that 25- and 30-day-old rats did not differ from the adult ones. Autocorrelagrams and power frequency spectra demonstrated a broad frequency range of the basic rhythm as well as delay in the development of occipital cortical areas in comparison to frontal areas.  相似文献   

5.
A hypothesis is put forward that one of the reasons for disturbances in visual perception during microsleep could be a spontaneous generation of Ponto-Geniculo-Occipital (PGO) waves. If the PGO waves are generated in microsleep, they could propagate into different thalamic nuclei conveying visual infomation. Consequently, a propagation of visual infonnation from the retina (if the eyes are opened) to visual neocortical areas and to input basal ganglia nucleus, striatum could be impaired. According to previously proposed mechanism of visual processing, which includes visual attention, in absence of striatum activation by a visual stimulus, a disinhibition through the basal ganglia of superior colliculus that transfer visual information to dopaminergic structures becomes impossible. Due to absence of dopamine release in response to visual stimulus, the attention to this stimulus cannot start, and therefore its processing worsens in all visual cortical areas. The suggested hypothesis could be verified in experiments with artificially evoked microsleep using non-invasive methods for searching for the correlates of the PGO activity presence in the brain.  相似文献   

6.
Currently, there is debate as to whether ponto-geniculo-occipital (PGO) waves or the resulting cortical arousal associated with such neural activity constitute the biological substrate of dreaming. The present study aimed to induce PGO activity in humans using an external stimulation technique. Participants (N = 15) were presented with tones (1,000 Hz) of increasing intensity during Stage II and rapid eye movement (REM) sleep. A peizosensor fixed to the eyelid captured ocular activity (OA) as an indicator of PGO activity in response to the tone. Compared to the stimulation, the Stage II control condition with no Stage II tone-induced ocular activity (OA) condition showed: a) more imagery reports that were rated as more vivid, and b) more electroencephalogram (EEG) arousal time. EEG arousal was correlated with the average Stage II imagery across participants. None of these findings were observed from REM sleep. It was concluded that investigation of PGO analogues, or even PGO activity itself, and dreaming might be inherently flawed due to the confounding presence of EEG arousal, as the two may be intimately linked. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
We analyzed EEG recorded in the rest condition (eye closed) in 22 children aged from 7 to 8 years old who experienced learning difficulties and whose EEG recordings were characterized by sporadic shortterm appearance of bilateral synchronous slow waves over the frontal and/or frontal and central cortices??frontal theta-waves (FTW). The vector autoregressive modeling was used in order to assess the strength of directed cortico-cortical functional connectivity pattern for FTW and for surrounding EEG. The comparison of the two patterns showed that FTW is characterized by diffuse strengthening of the functional links connecting frontal, central and (to some extent) temporal cortices as well as the links directed to the above regions from the other cortical areas. The results of the study suggest that FTW is most probably caused by the common for the frontal and central cortices neuronal theta activity synchronized via cortico-subcortical links. This suggestion is in a good agreement with the view that FTW reflects the alterations in functioning of fronto-thalamic system.  相似文献   

8.

Background

Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer''s disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands.

Methods

Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated.

Results

Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics.

Conclusion

Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.  相似文献   

9.
Although Attention-Deficit/Hyperactivity Disorder (ADHD) was initially regarded as a disorder exclusive to childhood, nowadays its prevalence in adulthood is well established. The development of novel techniques for quantifying the thickness of the cerebral mantle allows the further exploration of the neuroanatomical profiles underlying the child and adult form of the disorder. To examine the cortical mantle in children and adults with ADHD, we applied a vertex-wise analysis of cortical thickness to anatomical brain MRI scans acquired from children with (n = 43) and without ADHD (n = 41), as well as a group of adult neurotypical individuals (n = 31), adult patients with a history of stimulant treatment (n = 31) and medication-naïve adults with ADHD (n = 24). We observed several clusters of reduced laminar cortical thickness in ADHD patients in comparison to neurotypical individuals. These differences were primarily located in the dorsal attention network, including the bilateral inferior and superior parietal cortex and a section of the frontal cortex (centered on the superior frontal and precentral gyrus bilaterally). Further laminar thickness deficits were observed in the bilateral orbitofrontal cortex and medial occipital cortex. The deficits in the cortical surface were especially pronounced in the child sample, while adult patients showed a more typical laminar thickness across the cerebral mantle. These findings show that the neuroanatomical profile of ADHD, especially the childhood form of the disorder, involves robust alterations in the cortical mantle, which are most prominent in brain regions subserving attentional processing.  相似文献   

10.
Growing evidence suggests that aerobic fitness benefits the brain and cognition during childhood. The present study is the first to explore cortical brain structure of higher fit and lower fit 9- and 10-year-old children, and how aerobic fitness and cortical thickness relate to academic achievement. We demonstrate that higher fit children (>70th percentile VO2max) showed decreased gray matter thickness in superior frontal cortex, superior temporal areas, and lateral occipital cortex, coupled with better mathematics achievement, compared to lower fit children (<30th percentile VO2max). Furthermore, cortical gray matter thinning in anterior and superior frontal areas was associated with superior arithmetic performance. Together, these data add to our knowledge of the biological markers of school achievement, particularly mathematics achievement, and raise the possibility that individual differences in aerobic fitness play an important role in cortical gray matter thinning during brain maturation. The establishment of predictors of academic performance is key to helping educators focus on interventions to maximize learning and success across the lifespan.  相似文献   

11.

Objectives

Two parallel pathways have been proposed between the hippocampus and neocortex. Recently, the anterior and posterior hippocampus showed distinct connectivity with different cortical areas in an fMRI study. We investigated whether the two parallel pathways could be confirmed in patients with transient global amnesia (TGA) which is a natural lesion model of a perturbation of the hippocampus. In addition, we evaluated the relationship between the location of the hippocampal lesion and various clinical variables.

Methods

A consecutive series of 37 patients were identified from the TGA registry database of Seoul National University Bundang Hospital. Based on the location of the diffusion-weighted imaging (DWI) lesion along the anterior-posterior axis of the hippocampus, they were divided into the following three groups: head (n = 15), body (n = 15) or tail (n = 7). To evaluate which cortical regions showed hypoperfusion according to the location of the DWI lesion, their SPECT images were compared between two groups using statistical parametric mapping. We performed hierarchical cluster analysis to group demographic and clinical variables, including the location of the DWI lesion, into clusters.

Results

Statistical parametric mapping analyses revealed that more anterior DWI lesions were associated with hypoperfusion of the anterior temporal and frontal areas, whereas more posterior lesions were associated with hypoperfusion of the posterior temporal, parietal, occipital and cerebellar areas. The difference was most prominent between the group of hippocampal lesions on the head and tail. Hierarchical cluster analysis demonstrated that vomiting was related to female gender and hippocampal head lesions, whereas vascular risk factors were related to male gender and hippocampal body lesions.

Conclusions

We confirmed the parallel pathways between the hippocampus and neocortex with DWI and SPECT images of patients with TGA. Patients with hippocampal head lesions and body lesions were clustered within different groups of clinical variables.  相似文献   

12.
J R Lipsey  R G Robinson 《Life sciences》1986,38(24):2185-2192
Previous reports indicate that male rats given right (but not left) frontal cortical suction lesions develop hyperactivity accompanied by cortical norepinephrine depletions. In this study, female rats given such lesions to either hemisphere developed bilateral cortical norepinephrine depletions but no hyperactivity. Right lesion male rats developed both catecholamine depletions and hyperactivity. Thus, the lateralized hyperactivity response to these cortical lesions is sex-dependent and may involve sex differences in subcortical neural pathways.  相似文献   

13.
The modulatory influence of reserpine-induced PGO wave upon the spontaneous activity of visual cortical neurons was examined in acutely prepared cats. Unitary discharge of cortical neurons was recorded extracellularly with glass micropipettes. Of twenty three neurons three showed a vigorous discharge synchronously with a certain phase of PGO wave. One neuron was strongly suppressed by the occurrence of PGO wave. Three neurons showed an increase and one neuron showed a decrease, respectively, in discharge in a loose correlation with PGO wave. This study has demonstrated the presence of a unique group of neurons which show a burst discharge or a complete silence in a precisely phase-lock manner when reserpine-induced PGO wave occurred.  相似文献   

14.
Top-down attention to spatial and temporal cues has been thoroughly studied in the visual domain. However, because the neural systems that are important for auditory top-down temporal attention (i.e., attention based on time interval cues) remain undefined, the differences in brain activity between directed attention to auditory spatial location (compared with time intervals) are unclear. Using fMRI (magnetic resonance imaging), we measured the activations caused by cue-target paradigms by inducing the visual cueing of attention to an auditory target within a spatial or temporal domain. Imaging results showed that the dorsal frontoparietal network (dFPN), which consists of the bilateral intraparietal sulcus and the frontal eye field, responded to spatial orienting of attention, but activity was absent in the bilateral frontal eye field (FEF) during temporal orienting of attention. Furthermore, the fMRI results indicated that activity in the right ventrolateral prefrontal cortex (VLPFC) was significantly stronger during spatial orienting of attention than during temporal orienting of attention, while the DLPFC showed no significant differences between the two processes. We conclude that the bilateral dFPN and the right VLPFC contribute to auditory spatial orienting of attention. Furthermore, specific activations related to temporal cognition were confirmed within the superior occipital gyrus, tegmentum, motor area, thalamus and putamen.  相似文献   

15.
Neocortical and hippocampal EEG activity was recorded in 23 rats subjected to the bilateral electrolytic lesions of the diencephalic zona incerta (ZI). The aim was to find whether damage to ZI can replicate insomnia and disturbances in cortical EEG desynchronization and hippocampal theta rhythm found after lesions of the lateral hypothalamic (LH) area. No effect of the ZI lesions on waking-sleep cycle was found. The amplitude and frequency of cortical waves and hippocampal theta rhythm during waking were changed only in some rats. These changes were small, short-lasting and bidirectional (toward and increase or decrease in different subjects). Both the amplitude and frequency of paradoxical sleep theta were depressed in part of animals. Thus the marked EEG changes after LH lesions can not be attributed to simultaneous damage of the adjacent subthalamic region. However, the ZI seems to constitute a part of a larger system regulating cortical arousal and hippocampal theta rhythm.  相似文献   

16.

Background

To compare the neocortical amyloid loads among cognitively normal (CN), amnestic mild cognitive impairment (aMCI), and Alzheimer''s disease (AD) subjects with [18F]AV-45 positron emission tomography (PET).

Materials and Methods

[18F]AV-45 PET was performed in 11 CN, 13 aMCI, and 12 AD subjects to compare the cerebral cortex-to-whole cerebellum standard uptake value ratios (SUVRs) of global and individual volumes of interest (VOIs) cerebral cortex. The correlation between global cortical [18F]AV-45 SUVRs and Mini-Mental State Examination (MMSE) scores was analyzed.

Results

The global cortical [18F]AV-45 SUVRs were significantly different among the CN (1.08±0.08), aMCI (1.27±0.06), and AD groups (1.34±0.13) (p = 0.0003) with amyloidosis positivity rates of 9%, 62%, and 92% in the three groups respectively. Compared to CN subjects, AD subjects had higher SUVRs in the global cortical, precuneus, frontal, parietal, occipital, temporal, and posterior cingulate areas; while aMCI subjects had higher values in the global cortical, precuneus, frontal, occipital and posterior cingulate areas. There were negative correlations of MMSE scores with SUVRs in the global cortical, precuneus, frontal, parietal, occipital, temporal, posterior cingulate and anterior cingulate areas on a combined subject pool of the three groups after age and education attainment adjustment.

Conclusions

Amyloid deposition occurs relatively early in precuneus, frontal and posterior cingulate in aMCI subjects. Higher [18F]AV-45 accumulation is present in parietal, occipital and temporal gyri in AD subjects compared to the aMCI group. Significant correlation between MMSE scores and [18F]AV-45 SUVRs can be observed among CN, aMCI and AD subjects.  相似文献   

17.
We analyzed EEG recorded in the rest condition (eye closed) in 22 children aged from 7 to 8 years old who experienced learning difficulties and whose EEG recordings were characterized by sporadic short-term appearance of bilateral synchronous slow waves over the frontal and/or central cortices--frontal theta-waves (FTW). The vector autoregressive modeling was used in order to assess the strength of directed cortico-cortical functional connectivity pattern for FTW and for surrounding EEG. The comparison of the two patterns showed that FTW is characterized by diffuse strengthening of the functional links connecting frontal, central and (to some extent) temporal cortices as well as the links directed to the above regions from the other cortical areas. The results of the study suggest that FTW is most probably caused by the common for the fronto-central cortices neuronal theta activity synchronized via cortico-subcortical links. This suggestion is in a good agreement with the view that FTW reflects the alterations in functioning of fronto-thalamic system.  相似文献   

18.
Performance of cognitive tests and EEG spectral power were evaluated in 39 students aged from 19-21 years in two conditions: during common educational process and immediately before examination (stress condition). Before examination, the performance was better in subjects with low level of spectral density in the delta band (in the occipital, parietal, central and frontal cortical areas) and high level of the alpha-rhythm spectral density in all the cortical areas, A decrease in performance scores before examination was correlated with an increase in the delta activity (in the right frontal and temporal cortical areas) and rise of the anxiety level (tested by Spielberger).  相似文献   

19.
Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor "P300" positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.  相似文献   

20.
Guinea pigs were subjected to unilateral thermocoagulation of the frontal, parietal, temporal and occipital cortex, and were allowed to survive 4 and 7 days. Routine electron microscopic technique was employed to examine orthograde degenerative changes in the ipsilateral pontine nuclei. Following four days survival the degenerating corticofugal synaptic boutons (d.s.b.) exhibited features attributed to all three basic degeneration types: dark, filamentous, and light. Most of the synaptic boutons arising in the frontal, parietal and occipital cortex display filamentous degenerative changes, and measure approximately 3 micrometers. The temporopontine axons terminate as dark d.s.b. Also, some d.s.b. following frontal ablation (collaterals of the corticospinal tract?), and a small number of occipitopontine d.s.b. (visual associative cortex?), develop dark degenerative changes. Most of the dark d.s.b. measure less than 2 micrometer. The light d.s.b., with mean diameter 2 micrometer, are rarely found following frontal and occipital lesions. Following 7 days survival almost exclusively dark d.s.b. are to be observed--a great part of them, apparently, representing the late stage of the evolution of the filamentous and light degeneration. No d.s.b. were encountered in the pontine nuclei contralateral to the cortical lesion. In good agreement with preceding studies in other animal species, the present study provides a morphological evidence for a complex, multichannel relationships between the various regions of the cerebral cortex and the pontine nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号