首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Reddy LG  Jones LR  Thomas DD 《Biochemistry》1999,38(13):3954-3962
Phospholamban (PLB), a 52-amino acid protein, regulates the Ca-ATPase (calcium pump) in cardiac sarcoplasmic reticulum (SR) through PLB phosphorylation mediated by beta-adrenergic stimulation. The mobility of PLB on SDS-PAGE indicates a homopentamer, and it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, the oligomeric structure of PLB must be determined in its native milieu, a lipid bilayer containing the Ca-ATPase. Here we have used fluorescence energy transfer (FET) to study the oligomeric structure of PLB in SDS and dioleoylphosphatidylcholine (DOPC) lipid bilayers reconstituted in the absence and presence of Ca-ATPase. PLB was labeled, specifically at Lys 3 in the cytoplasmic domain, with amine-reactive fluorescent donor/acceptor pairs. FET between donor- and acceptor-labeled subunits of PLB in SDS solution and DOPC lipid bilayers indicated the presence of PLB oligomers. The dependence of FET efficiency on the fraction of acceptor-labeled PLB in DOPC bilayers indicated that it is predominantly an oligomer having 9-11 subunits, with approximately 10% of the PLB as monomer, and the distance between dyes on adjacent PLB subunits is 0.9 +/- 0.1 nm. When labeled PLB was reconstituted with purified Ca-ATPase, FET indicated the depolymerization of PLB into smaller oligomers having an average of 5 subunits, with a concomitant increase in the fraction of monomer to 30-40% and a doubling of the intersubunit distance. We conclude that PLB exists primarily as an oligomer in membranes, and the Ca-ATPase affects the structure of this oligomer, but the Ca-ATPase binds preferentially to the monomer and/or small oligomers. These results suggest that the active inhibitory species of PLB is a monomer or an oligomer having fewer than 5 subunits.  相似文献   

2.
Highly efficient organic–inorganic hybrid solar cells of Si‐poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) have been demonstrated by simultaneous structural, electrical, and interfacial engineering with low processing temperature. Si substrate has been sculpted into hierarchical structure to reduce light reflection loss and increase interfacial junction area at the same time. Regarding the electrical optimization, highly conductive organic PEDOT:PSS layer has been formulated with low sheet resistance. It is argued that the sheet resistance, rather than conductivity, is the primary parameter for the high efficiency hybrid cells, which leads to the optimization of thickness, i.e., thick enough to have low sheet resistance but transparent enough to pass the incident sunlight. Finally, siloxane oligomers have been inserted into top/bottom interfaces by contact‐printing at room ambient, which suppresses carrier recombination at interfaces and reduces contact resistance at bottom electrode. Contrary to high‐temperature doping (for the formation of front surface or back surface fields), wet solution processes or vacuum‐based deposition, the contact‐printing can be done at room ambient to reduce carrier recombination at the interfaces. The high efficiency obtained with low processing temperature can make this type of cells be a possible candidate for post‐Si photovoltaics.  相似文献   

3.
The low lying unoccupied orbitals of oligomers of 4-dicyanomethylene-4H-cyclopenta[2,1-b:3,4-b'] dithiophene (CDM) are not delocalized over the whole molecule. Is such electron localization in the conduction band of poly-CDM responsible for its low n-type conductivity? Are polymers of the tricyclic thioketone (TCT) with more delocalized unoccupied orbitals a better alternative for stable n-dopable conducting polymers? Monomer through tetramer of TCT have been optimized with density functional theory. IP, EA, energy gap, and band width of the corresponding polymer were obtained by extrapolation. Comparison with data for oligomers of 4-dicyanomethylene-4H-cyclopenta[2,1-b:3,4-b'] dithiophene and of thiophene indicates that the novel polymer would have a small band gap and would fulfil the conditions for n-dopability and high mobility of n-type carriers.  相似文献   

4.
Conjugated linoleic acid is a collective name for mixtures of several positional and geometric conjugated dienoic isomers of linoleic acid, which have been shown to impact favorably on several biological processes, particularly carcinogenesis. Recent studies have clearly established that the c9, t11 and t10, c12 isomers have distinct biological effects. The latter may be of particular importance in affecting blood lipids. Because conjugated linoleic acid has been suggested to be anti-atherogenic, this review is focused on its effects on cardiovascular function. Careful scrutiny of the literature suggests that at present it is premature to assign any beneficial role to conjugated linoleic acid in terms of its ability to impact either blood lipids or atherogenesis.  相似文献   

5.
Compared to inorganic semiconductors and/or fullerene derivatives, nonfullerene n‐type organic semiconductors present some advantages, such as low‐temperature processing, flexibility, and molecule structure diversity, and have been widely used in perovskite solar cells (PSCs). In this research news article, the recent advances in nonfullerene n‐type organic semiconductors which function as electron‐transporting, interface‐modifying, additive, and light‐harvesting materials in PSCs are summarized. The remaining challenges and promising future directions of nonfullerene‐based PSCs are also discussed.  相似文献   

6.
Studies have found that mutant, misfolded superoxide dismutase [Cu–Zn] (SOD1) can convert wild type SOD1 (wtSOD1) in a prion-like fashion, and that misfolded wtSOD1 can be propagated by release and uptake of protein aggregates. In developing a prion-like mechanism for this propagation of SOD1 misfolding we have previously shown how enervation of the SOD1 electrostatic loop (ESL), caused by the formation of transient non-obligate SOD1 oligomers, can lead to an experimentally observed gain of interaction (GOI) that results in the formation of SOD1 amyloid-like filaments. It has also been shown that freedom of ESL motion is essential to catalytic function. This work investigates the possibility that restricting ESL mobility might not only compromise superoxide catalytic activity but also serve to promote the peroxidase activity of SOD1, thus implicating the formation of SOD1 oligomers in both protein misfolding and in protein oxidation.  相似文献   

7.
A novel technique based upon injection‐charge extraction by linearly increasing voltage (i‐CELIV) in a metal‐insulator‐semiconductor (MIS) diode structure is described for studying charge transport in organic semiconductors. The technique (MIS‐CELIV) allows selective measurement of both electron and hole mobilities of organic solar cells with active layers thicknesses representative of operational devices. The method is used to study the model high efficiency bulk heterojunction combination poly[N‐9′′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM) at various blend ratios. The absence of bipolar transport in PCDTBT‐and‐PC70BM‐only diodes is shown and strongly imbalanced carrier mobility is found in the most efficient “optimized” blend ratios. The mobility measurements are correlated with overall device performance and it is found that balanced and high charge carrier mobility are not necessarily required for high efficiencies in thin film organic solar cells.  相似文献   

8.
Charge extraction rate in solar cells made of blends of electron donating/accepting organic semiconductors is typically slow due to their low charge carrier mobility. This sets a limit on the active layer thickness and has hindered the industrialization of organic solar cells (OSCs). Herein, charge transport and recombination properties of an efficient polymer (NT812):fullerene blend are investigated. This system delivers power conversion efficiency of >9% even when the junction thickness is as large as 800 nm. Experimental results indicate that this material system exhibits exceptionally low bimolecular recombination constant, 800 times smaller than the diffusion‐controlled electron and hole encounter rate. Comparing theoretical results based on a recently introduced modified Shockley model for fill factor, and experiments, clarifies that charge collection is nearly ideal in these solar cells even when the thickness is several hundreds of nanometer. This is the first realization of high‐efficiency Shockley‐type organic solar cells with junction thicknesses suitable for scaling up.  相似文献   

9.
Half‐Heusler (HH) compounds are important high temperature thermoelectric (TE) materials and have attracted considerable attention in the recent years. High figure of merit zT values of 0.8 to 1.0 have been obtained in n‐type ZrNiSn‐based HH compounds. However, developing high performance p‐type HH compounds are still a big challenge. Here, it is shown that a new p‐type HH alloy with a high band degeneracy of 8, Ti‐doped FeV0.6Nb0.4Sb, can achieve a high zT of 0.8, which is one of the highest reported values in the p‐type HH compounds. Although the band effective mass of this system is found to be high, which may lead to a low mobility, its low deformation potential and low alloy scattering potential both contribute to a reasonably high mobility. The enhanced phonon scattering by alloying leads to a reduced lattice thermal conductivity. The achieved high zT demonstrates that the p‐type Ti doped FeV0.6Nb0.4Sb HH alloys are promising as TE materials and offer an excellent TE performance match with n‐type ones for high temperature power generation.  相似文献   

10.
The effect of cyclic decapeptide of gramicidin S on electrical conductivity of bilayer lipid membranes has been studied. The integral conductivity of bilayer has been shown to increase with the growth of antibiotic concentration. The integral conductivity increase occurs as series of conductivity discrete leaps, differing in amplitude from fluctuations of conductivity caused by linear gramicidins. In the series of selectivity of bilayer membranes for cations of alkaline metals the rubidium ion is before the cesium ion. This is the only difference between this series and the series of relative ionic mobility series of cations of alkaline metals in water solutions.  相似文献   

11.
The cause of discrepancies in the literature regarding the specificity of immobilized Candida antarctica lipase B in the acylation of oligosaccharides was examined. Molecular sieves, generally used to control the water content during acylation reactions, turned out to have an important role in this. It was proven that molecular sieves alone can catalyze the acylation of fructose oligomers using vinyl laurate, leading to multiple substitution of the oligomers. This effect was the most profound at conditions unfavorable for the enzyme, because this resulted in a relatively high concentration of the chemically produced adducts. The enzyme alone catalyzed the formation of monosubstituted oligomers. It was proven that even solvent pre-drying by molecular sieves already causes the release of catalyzing compounds to the liquid, leading to subsequent catalysis. These findings should be taken into account when applying molecular sieves in this type of reactions in the future. Molecular sieves could, moreover, be used as a catalyst when multiple substitution is desired.  相似文献   

12.
Fused ring oligothiophenes and their derivatives, as active organic semiconductors, are widely used in electronic devices. The influence of molecular conjunction length on reorganization energy, electronic coupling and charge mobility of two fused ring oligothiophenes are investigated theoretically. The charge mobility of 2, 5-di(thiophen-2-yl)thieno [3, 2-b]thiophene (T?T2?T) with longer molecular conjunction length is 0.226 cm2V?1s?1, which is nearly 3 times larger than that of 2, 2-bithieno[3, 2-b]thiophene (T2?T2) as 0.085 cm2V?1s?1. The investigation will provide a new perspective to design high mobility organic semiconductors.  相似文献   

13.
Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers, or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term "hemichannels" to describe pannexin oligomers while others use the term "channels" instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus have an assembly and functional state as gap junctional intercellular channels. Here we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channel in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term "hemichannel" be discontinued within the pannexin literature.  相似文献   

14.
Mathematical models are developed describing unsteady-state bacterial growth on organic polymers that are hydrolyzed by extracellular enzymes secreted by the bacteria to yield low-molecular-weight oligomers that may be directly transported across bacterial cytoplasmic membranes and hence metabolized. Two different modes of extracellular enzyme action on the organic polymer are considered. In one case, the enzyme is exoacting yielding a transportable oligomer with each polymer bond hydrolyzed. In the other case, the enzyme is endoacting yielding a series of oligomers upon random cleavage of the polymer bonds with oligomers up to a certain chain length assumed to be transportable. These models are exploited to show under what circumstances the rate of hydrolysis by the extracellular enzyme to yield transportable oligomers influences the bacterial growth rate. It is shown that an initial lag period, an accentuated declining growth phase, and a low overall rate of bacterial growth will be some of the manifestations when the rate of hydrolysis has a strong influence.  相似文献   

15.
The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤500?mg acetic acid L?1 before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.  相似文献   

16.
We have developed a method using fluorescence energy transfer (FET) to analyze protein oligomeric structure. Two populations of a protein are labeled with fluorescent donor and acceptor, respectively, then mixed at a defined donor/acceptor ratio. A theoretical simulation, assuming random mixing and association among protein subunits in a ring-shaped homo-oligomer, was used to determine the dependence of FET on the number of subunits, the distance between labeled sites on different subunits, and the fraction of subunits remaining monomeric. By measuring FET as a function of the donor/acceptor ratio, the above parameters of the oligomeric structure can be resolved over a substantial range of their values. We used this approach to investigate the oligomeric structure of phospholamban (PLB), a 52-amino acid protein in cardiac sarcoplasmic reticulum (SR). Phosphorylation of PLB regulates the SR Ca-ATPase. Because PLB exists primarily as a homopentamer on sodium dodecyl sulfate polyacrylamide gel electrophoresis, it has been proposed that the pentameric structure of PLB is important for its regulatory function. However, this hypothesis must be tested by determining directly the oligomeric structure of PLB in the lipid membrane. To accomplish this goal, PLB was labeled at Lys-3 in the cytoplasmic domain, with two different amine-reactive donor/acceptor pairs, which gave very similar FET results. In detergent solutions, FET was not observed unless the sample was first boiled to facilitate subunit mixing. In lipid bilayers, FET was observed at 25 degrees C without boiling, indicating a dynamic equilibrium among PLB subunits in the membrane. Analysis of the FET data indicated that the dye-labeled PLB is predominantly in oligomers having at least 8 subunits, that 7-23% of the PLB subunits are monomeric, and that the distance between dyes on adjacent PLB subunits is about 10 A. A point mutation of PLB (L37A) that runs as monomer on SDS-PAGE showed no energy transfer, confirming its monomeric state in the membrane. We conclude that FET is a powerful approach for analyzing the oligomeric structure of PLB, and this method is applicable to other oligomeric proteins.  相似文献   

17.
The development of organic semiconductors for use in thermoelectrics requires the optimization of both their thermopower and electrical conductivity. Here two fundamentally different doping mechanisms are used to investigate the thermoelectric properties of known high hole mobility polymers: poly 3‐hexylthiophene (P3HT), poly(2,5bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT‐C14), and poly(2,5‐bis(thiphen‐2‐yl)‐(3,7‐diheptadecantyltetrathienoacene)) (P2TDC17‐FT4). The small molecule tetrafluorotetracyanoquinodimethane (F4TCNQ) is known to effectively dope these polymers, and the thermoelectric properties are studied as a function of the ratio of dopant to polymer repeat unit. Higher electrical conductivity and values of the thermoelectric power factor are achieved by doping with vapor‐deposited fluoroalkyl trichlorosilanes. The combination of these data reveals a striking relationship between thermopower and conductivity in thiophene‐based polymers over a large range of electrical conductivity that is independent of the means of electrical doping. This relationship is not predicted by commonly used transport models for semiconducting polymers and is demonstrated to hold for other semiconducting polymers as well.  相似文献   

18.
M K Mathew  C L Smith  C R Cantor 《Biochemistry》1988,27(26):9204-9210
Pulsed-field gel electrophoresis (PGF) subjects DNA alternately to two electrical fields to resolve DNA ranging from 10,000 base pairs (10 kb) to 10,000 kb in size. The separations are quite sensitive to a variety of experimental variables. This makes it critical to have a wide range of reliable size standards. A technique is described for preparing mixtures of bacteriophage DNA oligomers that span a size range from monomer to more than 30-mer. The relationship between size and mobility of oligomers of different bacteriophage DNA monomers is generally self-consistent. Thus, these samples can serve as primary length standards for DNAs ranging from 10 kb to more than 1500 kb. They have been used to estimate the size of the chromosomal DNAs from various Saccharomyces cerevisiae strains and to test the effect of gel concentration and temperature on PFG. DNA resolution during PFG is slightly improved in agarose gels with small pore sizes, in contrast to continuous electrophoresis where the opposite is observed. PFG mobility is surprisingly sensitive to changes in the running temperature.  相似文献   

19.
《Biological Wastes》1987,19(1):35-62
This paper reviews the currently available information concerning the use of town refuse compost as a potential fertilizer. Many studies have generally shown that the application of this material has promoted a positive influence on a wide variety of craps. Nevertheless, contradictory results of crop yields have been obtained when the fertilizing capacity of compost has been contrasted with those of organic and mineral fertilizers. It has been demonstrated that the application of compost to soil improves some physical properties such as porosity, water-holding capacity and bulk density. It also promotes buffering capacity of soil and increases the percentage of organic matter and cation exchange capacity. Occasionally, negative aspects can emerge from compost incorporation, such as an increase in organic pollutants and electrical conductivity of soils. In general, compost application to soil has a positive effect on the microbial population and rhizosphere microorganisms and also contributes to the reduction of nemotode populations in plants. However, when big doses of compost are used, an inhibitory effect on seed germination may appear. The nitrogen availability of the municipal compost is closely related to the maturity of this material. A wide range of results has been obtained from different studies performed to evaluate the efficiency of compost as a source of phosphorus, sulphur, calcium and magnesium for plants. The incorporation of municipal compost constitutes a valuable resource for supplying potassium and some micronutrients (i.e. boron and zinc), but also presents potential pollution hazards associated with some heavy metals.  相似文献   

20.
The speciation of cadmium, lead, copper, zinc, manganese and iron into exchangeable, carbonate, reducible and organic bound fractions was studied in sediments from coastal and freshwater environments in Ghana. This was relevant as the species in which metals are stored within specific sediment components is important in determining their impact on the environment. For both coastal and inland sediments, a higher percentage of cadmium was associated with the more available exchangeable and carbonate fractions, while iron, zinc and manganese were mainly associated with the reducible and organic fractions. Lead and copper were found to have the greatest ability to form different species in the samples examined and were more evenly associated with all the fractions. The metals generally showed more ability to form different species in inland freshwaters than in coastal relatively saline waters. However, differences between inland and coastal waters were based more on whether the environments were oxidising or reducing than on whether they were fresh or saline. The metals may be divided into three groups of high mobility consisting of lead and copper; moderate mobility made up of cadmium, manganese and zinc; and low mobility, represented by iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号