共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA bending induced by the catabolite activator protein allows ring formation of a 144 bp DNA 总被引:9,自引:0,他引:9
The effect of the catabolite activator protein, CAP, on the ligation of a 144 bp DNA was examined. This DNA has EcoRI ends and contains the lac operon CAP site and promoter-operator region. At low DNA concentrations (nM) and 37 degrees C the presence of CAP and cAMP enables T4 ligase to convert the linear duplex to a covalently closed ring. Nuclease digestion and sedimentation equilibrium studies show that the ring is a monomer circle. Ring formation does not occur in the absence of either CAP or cAMP. The kinetics of ring closure, and the bimolecular joining of two fragments were measured. The presence of CAP decreased the rate of bimolecular joining of the EcoRI ends of linear DNAs. Thus the measured rates of ring closure are likely to be a lower limit for this process. Closure reactions carried out with ethidium bromide indicate that CAP induced bending rather than twisting is responsible for ring formation. The all or none nature of the closure reaction suggests that persistence length DNAs may be useful in a simple assay for protein induced DNA bending. 相似文献
2.
Protein-induced unwinding of DNA: measurement by gel electrophoresis of complexes with DNA minicircles. Application to restriction endonuclease EcoRI, catabolite gene activator protein and lac repressor. 总被引:4,自引:0,他引:4 下载免费PDF全文
An electrophoretic procedure for the measurement of the helix unwinding induced by a sequence-specific protein is described. The method, which was applied here to EcoR I, CAP and lac repressor, involved the migration of the complexes with positively and negatively supercoiled DNA minicircles carrying a single protein binding site. Mobility shifts of complexes relative to naked DNAs appeared to be a result of i) the unwinding; of ii) an increase in the molecular frictional coefficient, which led to a retardation; of iii) bending, in the particular case of CAP, which induced an acceleration; and of iv) looping, in the case of lac repressor, which also resulted in an acceleration. Under conditions where the migration of the naked topoisomers was V-like (topoisomer mobility showed the same linear increase with both negative and positive supercoilings; Zivanovic et al. (1986) J. Mol. Biol., 192, 645-660), the protein unwinding contribution to mobility was assumed to be identical to that experimentally observed in the case of a thermal unwinding: all negatively supercoiled topoisomers were retarded and all positively supercoiled topoisomers were accelerated to the same extent. In contrast, the mobility contribution of the frictional term, as well as those of bending and looping, appeared to vary strongly with the magnitude of the supercoiling, but only weakly with its polarity. As a consequence, these latter contributions may approximately cancel when one is measuring the difference between the shifts observed for two comigrating, negatively and positively supercoiled, topoisomers, allowing the unwinding to be calculated. While estimates obtained for EcoR I, 23 +/- 3 degrees, and CAP, about 29 degrees, were in good agreement with previous measurements using topoisomerase I, the value found for lac repressor, 13 to 16 degrees, was significantly smaller. 相似文献
3.
Charge neutralization and DNA bending by the Escherichia coli catabolite activator protein 下载免费PDF全文
We are interested in the role of asymmetric phosphate neutralization in DNA bending induced by proteins. We describe an experimental estimate of the actual electrostatic contribution of asymmetric phosphate neutralization to the bending of DNA by the Escherichia coli catabolite activator protein (CAP), a prototypical DNA-bending protein. Following assignment of putative electrostatic interactions between CAP and DNA phosphates based on X-ray crystal structures, appropriate phosphates in the CAP half-site DNA were chemically neutralized by methylphosphonate substitution. DNA shape was then evaluated using a semi-synthetic DNA electrophoretic phasing assay. Our results confirm that the unmodified CAP DNA half-site sequence is intrinsically curved by 26° in the direction enhanced in the complex with protein. In the absence of protein, neutralization of five appropriate phosphates increases DNA curvature to 32° (~23% increase), in the predicted direction. Shifting the placement of the neutralized phosphates changes the DNA shape, suggesting that sequence-directed DNA curvature can be modified by the asymmetry of phosphate neutralization. We suggest that asymmetric phosphate neutralization contributes favorably to DNA bending by CAP, but cannot account for the full DNA deformation. 相似文献
4.
A model for the non-specific binding of catabolite gene activator protein to DNA 总被引:2,自引:1,他引:2 下载免费PDF全文
The binding of E. coli catabolite gene activator protein (CAP) to non-specific sequences of DNA has been modelled as an electrostatic interaction between four basic side chains of the CAP dimer and the charged phosphates of DNA. Calculation of the electrostatic contribution to the binding free energy at various separations of the two molecules shows that complex formation is favored when CAP and DNA are separated by as much as 12 A. Thus, the long range electrostatic interactions may provide the initial energy for complex formation and also the correct relative orientation of CAP and DNA. The non-specific complex does not involve the penetration of amino acid side chains into the major grooves of DNA and permits 'sliding' of the protein along DNA, which would enhance the rate of association of CAP with the specific site as has been proposed previously for lac repressor. We propose that, as it 'slides', CAP is moving in and out of the major grooves in order to sample the DNA sequence. Recognition of the specific DNA site is achieved by a complementarity in structure and hydrogen bonding between amino acids and the edges of base pairs exposed in the major grooves of DNA. 相似文献
5.
6.
7.
DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein. 总被引:4,自引:0,他引:4
The consensus DNA site for binding of the Escherichia coli catabolite gene activator protein (CAP) is 22 base pairs in length and is 2-fold symmetric: 5'-AAATGTGATCTAGATCACATTT-3'. Positions 4 to 8 of each half of the consensus DNA half-site are the most strongly conserved. In this report, we analyze the effects of substitution of DNA base pairs at positions 4 to 8, the effects of substitution of thymine by uracil and by 5-methylcytosine at positions 4, 6, and 8, and the effect of dam methylation of the 5'-GATC-3' sequence at positions 7 to 10. All DNA sites having substitutions of DNA base pairs at positions 4 to 8 exhibit lower affinities for CAP than does the consensus DNA site, consistent with the proposal that the consensus DNA site is the ideal DNA site for CAP. Specificity for T:A at position 4 appears to be determined solely by the thymine 5-methyl group. Specificity for T:A at position 6 and specificity for A:T at position 8 appear to be determined in part, but not solely, by the thymine 5-methyl group. dam methylation has little effect on CAP.DNA complex formation. The thermodynamically defined consensus DNA site spans 28 base pairs. All, or nearly all, DNA determinants required for maximal affinity for CAP and for maximal thermodynamically defined CAP.DNA ion pair formation are contained within a 28-base pair DNA fragment that has the 22-base pair consensus DNA site at its center. The quantitative data in this report provide base-line thermodynamic data required for detailed investigations of amino acid-base pair and amino acid-phosphate contacts in this protein-DNA complex. 相似文献
8.
Measurement of DNA length by gel electrophoresis 总被引:48,自引:0,他引:48
E. M. Southern 《Analytical biochemistry》1979,100(2):319-323
Plotting fragment length against reciprocal of mobility gives a straight line over a wider range than the conventional semilogarithmic plot. Curvature can be removed by a simple correction. A method is also given for determining molecular weights from mobilities by direct calculation. 相似文献
9.
10.
11.
We describe the comparative analysis of protein aggregates by combining blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using a 3-D geometry gel for simultaneous processing of many samples. The first native electrophoresis step, separating the aggregates, is carried out for a series of samples in parallel lanes within a slab gel. This gel is then placed on the top surface of a cylindrical, 3-D geometry gel for the second denaturing electrophoresis step, separating the proteins composing the aggregates. The samples migrate parallel to the vertical axis of the gel cylinder. Data are acquired online by photodetection of laser-induced fluorescence during electrophoresis. For this purpose, the samples are fluorescently labeled within the slab gel after the first separation step. A 3-D geometry gel separates the equivalent of many conventional SDS slab gels represented by vertical layers in the 3-D gel body. In this way, many samples are analyzed in the same gel under identical conditions, improving comparability and resolution and making the process considerably more efficient. This novel technique allowed the identification of several aggregate classes of recombinant proteins expressed in bacteria. We observed that proteins preferentially bind to homolog polypeptides, but also seem to form a trapping mesh co-aggregating with other proteins. The aggregation pattern revealed by this technique supplements data obtained from standard two-dimensional gel electrophoresis analysis. We expect interesting applications, for instance in aggregate monitoring of clinical samples. It should be feasible to quickly gain a diagnostic picture during amyloid-related neurodegenerative disease development or to observe drug effects on protein aggregation. 相似文献
12.
Identification of protein binding sites in genomic DNA by two-dimensional gel electrophoresis. 总被引:5,自引:1,他引:4 下载免费PDF全文
We describe a simple two-dimensional electrophoresis procedure to identify the recognition sites of DNA-binding proteins within large DNA molecules. Using this approach, we have mapped E. coli IHF (Integration Host Factor) binding sites within phage Lambda (48 kb) and phage Mu (39 kb) DNA. We are also able to visualize IHF binding sites in E. coli chromosomal DNA (4,700 kb). We present an extension of this technique using direct amplification by PCR of the isolated restriction fragments, which should permit the cloning of a collection of recognition sequences for DNA binding proteins in complex genomes. 相似文献
13.
Analysis of tomato DNA by pulsed field gel electrophoresis 总被引:2,自引:2,他引:0
14.
Y Arao M Yoshida Z L Bai Y Kori A Nakatsukasa Y Takei K Aoji M Yamada F Uno K Miyoshi 《Microbiology and immunology》1990,34(3):269-282
A new method for detection of varicella-zoster virus (VZV) DNA using field-inversion gel electrophoresis (FIGE) was devised. VZV-genomic DNA could be differentiated from the host cell DNA of human embryonic lung (HEL) fibroblasts infected with VZV under electrophoretic conditions allowing resolution of linear and double-stranded DNAs in the 49-230 kilobase pairs (Kb) range. The detection of VZV-genomic DNA from infected HEL cells was successful regardless of whether the VZV was a laboratory strain, live vaccine strain, or fresh isolate. Under the same electrophoretic conditions, DNA of VZV-infected HEL cells could be clearly differentiated from DNA obtained from HEL cells infected with herpes simplex virus type 1 (HSV-1), type 2 (HSV-2), or human cytomegalovirus (HCMV). Furthermore, VZV genomic DNA could be detected from as small a sample as 1.9 x 10(4) VZV-infected HEL cells. Finally, we could detect VZV genomic DNA from 10 samples of vesicle tissue (blister lids, each about 1-4 mm2) and one sample of vesicle fluid (about 5 microliters) obtained from patients diagnosed as having herpes-zoster. The results of this study indicate that FIGE is a simple and promising method for the detection of VZV from clinical materials as well as infected in vitro cultured cells. 相似文献
15.
Crystallization of Escherichia coli catabolite gene activator protein with its DNA binding site. The use of modular DNA 总被引:1,自引:0,他引:1
To obtain crystals of the Escherichia coli catabolite gene activator protein (CAP) complexed with its DNA-binding site, we have searched for crystallization conditions with 26 different DNA segments greater than or equal to 28 base-pairs in length that explore a variety of nucleotide sequences, lengths, and extended 5' or 3' termini. In addition to utilizing uninterrupted asymmetric lac site sequences, we devised a novel approach of synthesizing half-sites that allowed us to efficiently generate symmetric DNA segments with a wide variety of extended termini and lengths in the large size range (greater than or equal to 28 bp) required by this protein. We report three crystal forms that are suitable for X-ray analysis, one of which (crystal form III) gives measurable diffraction amplitudes to 3 A resolution. Additives such as calcium, n-octyl-beta-D-glucopyranoside and spermine produce modest improvements in the quality of diffraction from crystal form III. Adequate stabilization of crystal form III is unexpectedly complex, requiring a greater than tenfold reduction in the salt concentration followed by addition of 2-methyl-2,4-pentanediol and then an increase in the concentration of polyethylene glycol. 相似文献
16.
17.
18.
Theory of gel electrophoresis of DNA 总被引:1,自引:0,他引:1
A theory of the electrophoresis of DNA through gels with large interfiber spacing, such as dilute agarose, is presented. We assume that the DNA molecule moves along its axis through a “tube” in a neutral gel under the influence of the electric field. The tube is random except for possible bias due to the effects of the field. When the field is small, we easily recover the inverse-length dependence of the mobility found previously by de Gennes and by Doi and Edwards. At higher fields, a new effect appears; the tube becomes oriented because the field biases the direction of the leading end of the chain as it moves to form an extension of the tube. This leads to an increase of the mobility with increasing field by adding a field-dependent but length-independent term to the mobility expression. In agreement with experiment, we find that the field effect can be important at fields as low as 1 V/cm and that the effect can seriously decrease the sensitivity of the mobility to chain length. We also examine the fluctuation of the migration distance, the degree of orientation induced by the field, and the transient effects occurring when the feld direction is rotated by a right angle. 相似文献
19.
Intracellular location of catabolite activator protein of Escherichia coli. 总被引:2,自引:1,他引:2 下载免费PDF全文
The catabolite activator protein was assayed in extracts from the minicell-producing Escherichia coli strain P678-54. The level of catabolite activator protein was found to be the same in both parent cells and purified minicells, regardless of whether the bacteria were grown on glucose (which leads to low intracellular cyclic adenosine monophosphate levels) or on glycerol-yeast extract or LB broth (which lead to high cyclic adenosine monophosphate concentrations in the cell). Thus, at any given time most catabolite activator protein molecules are found in the cytoplasm. The implications of this for the mechanism of catabolite activator protein action at catabolite-sensitive operons are discussed. 相似文献
20.