首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Mycoplasmas are cell wall-less bacteria which encode a minimal set of proteins. In Mycoplasma hominis, the genes encoding the surface-localized membrane complex P60/P80 are in an operon with a gene encoding a cytoplasmic, nucleotide-binding protein with a characteristic Histidine triad motif (HinT). HinT is found in both procaryotes and eukaryotes and known to hydrolyze adenosine nucleotides in eukaryotes. Immuno-precipitation and BIACore analysis revealed an interaction between HinT and the P80 domain of the membrane complex. As the membrane anchored P80 carries an N-terminal uncleaved signal peptide we have proposed that the N-terminus extends into the cytoplasm and interacts with the cytosolic HinT.  相似文献   

2.
3.
The previously uncharacterized third and fourth genes (pulE and pulF) of the pullulanase secretion gene operon of Klebsiella oxytoca strain UNF5023 are, respectively, predicted to encode a 55 kDa polypeptide with a putative nucleotide-binding site, and a highly hydrophobic 44 kDa polypeptide that probably spans the cytoplasmic membrane several times. Expression of pulE in minicells or under the control of a strong bacteriophage T7 promoter resulted in the production of a c. 58 kDa cytoplasmic protein. A representative PulE-beta-galactosidase hybrid protein created by Tnlac mutagenesis was also found mainly in the cytoplasm. These results are in line with the predicted absence from PulE of a region of sufficient hydrophobicity to function as a signal sequence. The PulF polypeptide could not be detected either in minicells or when the gene was transcribed from the T7 promoter, but the acquirement of three pulF-lacZ gene fusions that encoded hybrid proteins with relatively high levels of beta-galactosidase activity indicates that this gene can be transcribed and translated. Gene disruption experiments indicated that both pulE and pulF are required for pullulanase secretion in Escherichia coli K-12. Both proteins exhibit considerable homology throughout their entire lengths with other proteins involved in protein secretion, pilin assembly, conjugation and transformation competence in a variety of bacteria. In addition, PulE protein has consensus sequences found in a wide variety of nucleotide-binding proteins. This study completes the initial characterization of the pullulanase secretion gene operon, which comprises 13 genes that are all essential for the transport of pullulanase across the outer membrane.  相似文献   

4.
Pathogenic Neisseria express type IV pili (tfp), which have been shown to play a central role in the interactions of bacteria with their environment. The regulation of piliation thus constitutes a central element in bacterial life cycle. The PilC proteins are outer membrane-associated proteins that have a key role in tfp biogenesis since PilC-null mutants appear defective for fibre expression. Moreover, tfp are also subjected to retraction, which is under the control of the PilT nucleotide-binding protein. In this work, we bring evidence that fibre retraction involves the translocation of pilin subunits to the cytoplasmic membrane. Furthermore, by engineering meningococcal strains that harbour inducible pilC genes, and with the use of meningococcus-cell interaction as a model for the sequential observation of fibre expression and retraction, we show that the PilC proteins regulate PilT-mediated fibre retraction.  相似文献   

5.
The physiological correlation between nucleoside-diphosphate kinases (NDP-kinases) and the 21-kDa guanine nucleotide-binding proteins (G1 and G2) which are copurified with the enzymes from the cell membrane fractions of Ehrlich ascites tumor cells has been biochemically investigated in vitro. We found that: incubation of the phosphoenzyme (enzyme-bound high-energy phosphate intermediate) of NDP-kinases (F-I and F-II) with one of the nucleoside 5'-diphosphates in the presence of 1 mM Mg2+ or 0.25 mM Ca2+ results in the rapid formation of nucleoside 5'-triphosphates without strict base specificity; GDP on the guanine nucleotide-binding proteins (G1, G2 and recombinant v-rasH p21) acts as a phosphate acceptor for the high-energy phosphates of the phosphoenzyme in the presence of 0.25 mM Ca2+; and [32P]GTP is preferentially formed from the 32P-labelled phosphoenzyme F-I and GDP-bound G1 or GDP-bound recombinant v-rasH p21 protein, even if any other nucleoside 5'-diphosphates are present in the reaction mixture. Although [32P]GTP formed was bound with the guanine nucleotide-binding proteins, it was immediately hydrolyzed by the proteins themselves in the presence of 5 mM Mg2+, but not in the presence of 0.25 mM Ca2+. Available evidence suggests that NDP-kinase may be responsible for the activation of the guanine nucleotide-binding proteins (G1, G2 and p21 proteins) through phosphate transfer by the enzyme.  相似文献   

6.
Vibrio cholerae secretes a number of proteins important for virulence, including cholera toxin. This process requires the products of the eps genes which have homologues in genera such as Aeromonas, Klebsiella and Pseudomonas and are thought to form a membrane-associated multiprotein complex. Here we show that the putative nucleotide-binding protein EpsE is associated with and stabilized by the cytoplasmic membrane via interaction with EpsL. Analysis of fusion proteins between EpsE and the homologous ExeE from Aeromonas hydrophila demonstrates that the N-terminus of EpsE contains the EpsL binding domain and determines species specificity. An intact Walker A box, commonly found in ATP-binding proteins, is required for activity of EpsE in vivo and for autophosphorylation of purified EpsE in vitro. These results indicate that both the kinase activity of EpsE as well as its ability to interact with the putative cytoplasmic membrane protein EpsL are required for translocation of toxin across the outer membrane in Vibrio cholerae.  相似文献   

7.
The nucleotide sequence of the Bacillus licheniformis bacitracin-resistance locus was determined. The presence of three open reading frames, bcrA, bcrB and bcrC, was revealed. The BcrA protein shares a high degree of homology with the hydrophilic ATP-binding components of the ABC family of transport proteins. The bcrB and bcrC genes were found to encode hydro-phobic proteins, which may function as membrane components of the permease. Apart from Bacillus subtilis, these genes also confer resistance upon the Gram-negative Escherichia coli. The presumed function of the Bcr transporter is to remove the bacitracin molecule from its membrane target. In addition to the homology of the nucleotide-binding sites, BcrA protein and mammalian multidrug transporter or P-glycoprotein share collateral detergent sensitivity of resistant cells and possibly the mode of Bcr transport activity within the membrane. The advantage of the resistance phenotype of the Bcr transporter was used to construct deletions within the nucleotide-binding protein to determine the Importance of various regions in transport.  相似文献   

8.
The ABC superfamily is a diverse group of integral membrane proteins involved in the ATP-dependent transport of solutes across biological membranes in both prokaryotes and eukaryotes. Although ABC transporters have been studied for over 30 years, very little is known about the mechanism by which the energy of ATP hydrolysis is used to transport substrate across the membrane. The recent report of the high resolution crystal structure of HisP, the nucleotide-binding subunit of the histidine permease complex of Salmonella typhimurium, represents a significant breakthrough toward the elucidation of the mechanism of solute translocation by ABC transporters. In this review, we use data from the crystallographic structures of HisP and other nucleotide-binding proteins, combined with sequence analysis of a subset of atypical ABC transporters, to argue a new model for the dimerisation of the nucleotide-binding domains that embraces the notion that the C motif from one subunit forms part of the ATP-binding site in the opposite subunit. We incorporate this dimerisation of the ATP-binding domains into our recently reported beta-barrel model for P-glycoprotein and present a general model for the cooperative interaction of the two nucleotide-binding domains and the translocation of mechanical energy to the transmembrane domains in ABC transporters.  相似文献   

9.
The xcp genes are required for the secretion of most extracellular proteins by Pseudomonas aeruginosa. The products of these genes are essential for the transport of exoproteins across the outer membrane after they have reached the periplasm via a signal sequence-dependent pathway. To date, analysis of three xcp genes has suggested the conservation of this secretion pathway in many Gram-negative bacteria. Furthermore, the xcpA gene was shown to be identical to pilD, which encodes a peptidase involved in the processing of fimbrial (pili) subunits, suggesting a connection between pili biogenesis and protein secretion. Here the nucleotide sequences of seven other xcp genes, designated xcpR to -X, are presented. The N-termini of four of the encoded Xcp proteins display similarity to the N-termini of type IV pili, suggesting that XcpA is involved in the processing of these Xcp proteins. This could indeed be demonstrated in vivo. Furthermore, two other proteins, XcpR and XcpS, show similarity to the PilB and PilC proteins required for fimbriae assembly. Since XcpR and PilB display a canonical nucleotide-binding site, ATP hydrolysis may provide energy for both systems.  相似文献   

10.
The genes ftsE and ftsX are organized in one operon together with ftsY. FtsY codes for the receptor of the signal recognition particle (SRP) that functions in targeting a subset of inner membrane proteins. We have found no indications for a structural relationship between FtsE/X and FtsY. Evidence is presented that FtsE and FtsX form a complex in the inner membrane that bears the characteristics of an ATP-binding cassette (ABC)-type transporter. FtsE is a hydrophilic nucleotide-binding protein that has a tendency to dimerize and associates with the inner membrane through an interaction with the integral membrane protein FtsX. An FtsE null mutant showed filamentous growth and appeared viable on high salt medium only, indicating a role for FtsE in cell division and/or salt transport.  相似文献   

11.
12.
Bacterial periplasmic binding protein-dependent transport systems require the function of a specific substrate-binding protein, located in the periplasm, and several membrane-bound components. We present evidence for a nucleotide-binding site on one of the membrane components from each of three independent transport systems, the hisP, malK and oppD proteins of the histidine, maltose and oligopeptide permeases, respectively. The amino acid sequence of the oppD protein has been determined and this protein is shown to share extensive homology with the hisP and malK proteins. Three lines of evidence lead us to propose the existence of a nucleotide-binding site on each of these proteins. A consensus nucleotide-binding sequence can be identified in the same relative position in each of the three proteins. The oppD protein binds to a Cibacron Blue affinity column and can be eluted by ATP but not by CTP or NADH. The oppD protein is labelled specifically by the nucleotide affinity analogue 5'-p-fluorosulphonylbenzoyladenosine. The identification of a nucleotide-binding site provides strong evidence that transport by periplasmic binding protein-dependent systems is energized directly by the hydrolysis of ATP or a closely related nucleotide. The hisP, malK and oppD proteins are thus responsible for energy-coupling to their respective transport systems.  相似文献   

13.
The polysialic acid capsule of Escherichia coli K1, a causative agent of neonatal septicemia and meningitis, is an essential virulence determinant. The 17-kb kps gene cluster, which is divided into three functionally distinct regions, encodes proteins necessary for polymer synthesis and expression at the cell surface. The central region, 2, encodes products required for synthesis, activation, and polymerization of sialic acid, while flanking regions, 1 and 3, are thought to be involved in polymer assembly and transport. In this study, we identified two genes in region 3, kpsM and kpsT, which encode proteins with predicted sizes of 29.6 and 24.9 kDa, respectively. The hydrophobicity profile of KpsM suggests that it is an integral membrane protein, while KpsT contains a consensus ATP-binding domain. KpsM and KpsT belong to a family of prokaryotic and eukaryotic proteins involved with a variety of biological processes, including membrane transport. A previously described kpsT chromosomal mutant that accumulates intracellular polysialic acid was characterized and could be complemented in trans. Results of site-directed mutagenesis of the putative ATP-binding domain of KpsT are consistent with the view that KpsT is a nucleotide-binding protein. KpsM and KpsT have significant similarity to BexB and BexA, two proteins that are essential for polysaccharide capsule expression in Haemophilus influenzae type b. We propose that KpsM and KpsT constitute a system for transport of polysialic acid across the cytoplasmic membrane.  相似文献   

14.
The ATP-sensitive potassium (K(ATP)) channel couples glucose metabolism to insulin secretion in pancreatic beta-cells. It comprises regulatory sulfonylurea receptor 1 and pore-forming Kir6.2 subunits. Binding and/or hydrolysis of Mg-nucleotides at the nucleotide-binding domains of sulfonylurea receptor 1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. We report here the first purification and functional characterization of sulfonylurea receptor 1. We also compared the ATPase activity of sulfonylurea receptor 1 with that of the isolated nucleotide-binding domains (fused to maltose-binding protein to improve solubility). Electron microscopy showed that nucleotide-binding domains purified as ring-like complexes corresponding to approximately 8 momomers. The ATPase activities expressed as maximal turnover rate [in nmol P(i).s(-1).(nmol protein)(-1)] were 0.03, 0.03, 0.13 and 0.08 for sulfonylurea receptor 1, nucleotide-binding domain 1, nucleotide-binding domain 2 and a mixture of nucleotide-binding domain 1 and nucleotide-binding domain 2, respectively. Corresponding K(m) values (in mm) were 0.1, 0.6, 0.65 and 0.56, respectively. Thus sulfonylurea receptor 1 has a lower K(m) than either of the isolated nucleotide-binding domains, and a lower maximal turnover rate than nucleotide-binding domain 2. Similar results were found with GTP, but the K(m) values were lower. Mutation of the Walker A lysine in nucleotide-binding domain 1 (K719A) or nucleotide-binding domain 2 (K1385M) inhibited the ATPase activity of sulfonylurea receptor 1 by 60% and 80%, respectively. Beryllium fluoride (K(i) 16 microm), but not MgADP, inhibited the ATPase activity of sulfonylurea receptor 1. In contrast, both MgADP and beryllium fluoride inhibited the ATPase activity of the nucleotide-binding domains. These data demonstrate that the ATPase activity of sulfonylurea receptor 1 differs from that of the isolated nucleotide-binding domains, suggesting that the transmembrane domains may influence the activity of the protein.  相似文献   

15.
Interactions between domains of ATP-binding cassette (ABC) transporters are of great functional importance and yet are poorly understood. To gain further knowledge of these protein–protein interactions, we studied the inner membrane complex of the maltose transporter of Escherichia coli . We focused on interactions between the nucleotide-binding protein, MalK, and the transmembrane proteins, MalF and MalG. We incubated purified MalK with inverted membrane vesicles containing MalF and MalG. MalK bound specifically to MalF and MalG and reconstituted a functional complex. We used this approach and limited proteolysis with trypsin to show that binding and hydrolysis of ATP, inducing conformational changes in MalK, modulate its interaction with MalF and MalG. MalK in the reconstituted complex was less sensitive to protease added from the cytoplasmic side of the membrane, and one proteolytic cleavage site located in the middle of a putative helical domain of MalK was protected. These results suggest that the putative helical domain of the nucleotide-binding domains is involved, through its conformational changes, in the coupling between the transmembrane domains and ATP binding/hydrolysis at the nucleotide-binding domains.  相似文献   

16.
Type IV pili (Tfps) are filamentous surface appendages expressed by Gram-negative microorganisms and play numerous roles in bacterial cell biology. Tfp biogenesis machineries are highly conserved and resemble protein secretion and DNA uptake systems. Although components of Tfp biogenesis systems have been identified, it is not known how they interact to form these machineries. Using the bundle-forming pilus (BFP) of enteropathogenic Escherichia coli as a model Tfp system, we provide evidence of a cytoplasmic membrane subassembly of the Tfp assembly machine composed of putative cytoplasmic nucleotide-binding and cytoplasmic membrane proteins. A combination of genetic, biochemical and biophysical approaches revealed interactions among putative cytoplasmic nucleotide-binding proteins BfpD and BfpF and cytoplasmic membrane proteins BfpC and BfpE of the BFP biogenesis machine. The polytopic membrane protein BfpE appears to be a central component of this subassembly as it interacts with BfpC, BfpD and BfpF. We report that BFP biogenesis probably requires interactions among BfpC, BfpD and BfpE, whereas BFP retraction requires interaction of the PilT-like putative ATPase BfpF with a conserved domain of BfpE. BfpE is the first protein that is not a member of the PilT family to be implicated in Tfp retraction. Furthermore, we found that the putative ATPases BfpD and BfpF play antagonistic roles in BFP biogenesis and retraction, respectively, by interacting with distinct domains of the BFP biogenesis machine.  相似文献   

17.
C Spetea  B Lundin 《FEBS letters》2012,586(18):2946-2954
The thylakoid lumen is an aqueous chloroplast compartment enclosed by the thylakoid membrane network. Bioinformatic and proteomic studies indicated the existence of 80-90 thylakoid lumenal proteins in Arabidopsis thaliana, having photosynthetic, non-photosynthetic or unclassified functions. None of the identified lumenal proteins had canonical nucleotide-binding motifs. It was therefore suggested that, in contrast to the chloroplast stroma harboring nucleotide-dependent enzymes and other proteins, the thylakoid lumen is a nucleotide-free compartment. Based on recent findings, we provide here an updated view about the presence of nucleotides in the thylakoid lumen of plant chloroplasts, and their role in function and dynamics of photosynthetic complexes.  相似文献   

18.
Citrobacter rodentium is used as an in vivo model system for clinically significant enteric pathogens such as enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). These pathogens all colonize the lumen side of the host gastrointestinal tract via attaching and effacing (A/E) lesion formation. In order to identify genes required for the colonization of A/E-forming pathogens, a library of signature-tagged transposon mutants of C. rodentium was constructed and screened in mice. Of the 576 mutants tested, 14 were attenuated in their ability to colonize the descending colon. Of these, eight mapped to the locus of enterocyte effacement (LEE), which is required for the formation of A/E lesions, underlying the importance of this mechanism for pathogenesis. Another mutant, P5H2, was found to have a transposon insertion in an open reading frame that has strong similarity to type IV pilus nucleotide-binding proteins. The region flanking the transposon insertion was sequenced, identifying a cluster of 12 genes that encode the first described pilus of C. rodentium (named colonization factor Citrobacter, CFC). The proteins encoded by cfc genes have identity to proteins of the type IV COF pilus of enterotoxigenic E. coli (ETEC), the toxin co-regulated pilus of Vibrio cholerae and the bundle-forming pilus of EPEC. A non-polar mutation in cfcI, complementation of this strain with wild-type cfcI and complementation of strain P5H2 with wild-type cfcH confirmed that these genes are required for colonization of the gastrointestinal tract by C. rodentium. Thus, CFC provides a convenient model to study type IV pilus-mediated pathogen-host interactions under physiological conditions in the natural colonic environment.  相似文献   

19.
Bacteriophage phi 6 contains three segments of double-stranded RNA. The procapsid consists of proteins P1, P2, P4, and P7, which are encoded by the viral L segment. cDNA copies of this segment have been cloned into plasmids that direct the production of these proteins, which assemble into polyhedral procapsids. These procapsids are capable of packaging plus-sense phi 6 RNA in the presence of nucleoside triphosphate and synthesizing the complementary minus strand to form double-stranded RNA. In this article, we report the presence of a nucleotide-binding site in protein P4. The viral procapsid and nucleocapsid exhibit a nucleoside triphosphate phosphohydrolase activity that converts nucleoside triphosphates into nucleoside diphosphates.  相似文献   

20.
SecA protein, the ATPase promoting translocation of proteins across the Escherichia coli inner membrane, contains two ATP-binding domains that differ greatly in their affinity for bound nucleotide. In order to define more precisely the location of the high-affinity nucleotide-binding site, oligonucleotide-directed mutagenesis was used to introduce cysteine residues into the SecA sequence, and a cysteine-specific cleavage reagent was employed to generate defined peptides of SecA protein after photocross-linking with [α-32P]-ATP. This analysis revealed that the nucleotide was cross-linked between amino acid residues 75 and 97 of SecA protein. The biochemical function of the high affinity ATP-binding domain was explored by subcellular fractionation studies which demonstrated that SecA proteins defective in this region were found almost exclusively in their integral membrane form, while SecA proteins with defects in the low-affinity ATP-domain showed a normal distribution of cytosolic, peripheral and integral membrane forms. Interestingly, the SecA51(Ts) protein that has a Leu to Pro substitution at amino acid residue 43 bound ATP with high affinity, but its fractionation pattern and translocation ATPase activity were similar to those of proteins with defects in the high-affinity ATP-binding site. These results delimit more precisely the high-affinity ATP-binding domain of SecA, indicate the importance of the early amino-terminal region of SecA protein in the functioning of this domain, and demonstrate the role of this domain in regulating penetration of SecA protein into the inner membrane. Our results lead to a simple model for the regulation of a cycle of SecA insertion into, and de-insertion from, the inner membrane by the activity of the high-affinity ATP-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号