首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The O-specific side-chain polymers from Stenotrophomonas maltophilia serogroups O21 and O25 were isolated from the lipopolysaccharides of the reference strains. The O21 polymer contained D-arabinose, 2-amino-2-deoxy-D-glucose and 2-amino-2-deoxy-D-galactose in equal proportions. Methylation analysis and NMR spectroscopy showed that the polysaccharide is based on a branched trisaccharide repeating unit of the structure shown below. The O25 polymer is linear with a disaccharide repeating unit identical to that forming the backbone of the O21 polymer.  相似文献   

2.
Structural studies have been carried out on the putative O-specific polysaccharide of the reference strain (C.D.C. 3607-60) for Serratia marcescens O13. Circumstantial evidence that the O13 antigen is a microcapsular, acidic polymer, rather than an integral part of the lipopolysaccharide, has been obtained. Degradative and spectroscopic studies established that the polymer is based on the repeating unit shown, in which the glucuronic acid residue of the linear pentasaccharide carries the lateral 2-acetamido-2-deoxy-beta-D-glucopyranosyl substituent in only about half of the units. The same polymer, again with non-stoichiometric substitution, is also produced by strain IP 421 (O13:H7). The latter strain also produces a neutral polymer which appears to constitute the side chain of the lipopolysaccharide. This polymer, which has a disaccharide repeating-unit of 2-substituted beta-D-ribofuranosyl and 4-substituted 2-acetamido-2-deoxy-alpha-D-galactopyranosyl residues, has been isolated previously from the lipopolysaccharides of the reference strains for S. marcescens serogroups O12 and O14, and appears to be the antigen known to be shared by these strains. (Formula: see text).  相似文献   

3.
A polysaccharide containing D-ribose, N-acetyl-D-glucosamine, and N-acetyl-D-mannosamine was isolated from the phenol-soluble lipopolysaccharide extracted from defatted cell walls of the reference strain (560) for serogroup O16 of Stenotrophomonas maltophilia. The results of methylation analysis, chemical degradations, and NMR spectroscopy showed that the polysaccharide is based on a branched trisaccharide repeating-unit of the structure shown below. Although ribose was absent from about half of the units in the isolated polymer, the regularity and spacing of the ladder observed on SDS-PAGE of the parent lipopolysaccharide indicate that this was an artefact of the mild acid hydrolysis used to release the polymer. On the other hand, the effects of mild alkaline hydrolysis on the polymer indicated partial O-acetylation. [structure: see text]  相似文献   

4.
A unique bacteriophage of Aeromonas hydrophila serotype O:34 was isolated, purified, and characterized. The bacterial surface receptor was shown to be the O-antigen polysaccharide component of lipopolysaccharide specific to serotype O:34, which was chemically characterized. The high molecular weight lipopolysaccharide fraction (a fraction enriched in O antigen) was fully able to inactivate bacteriophage PM1. Phage-resistant mutants of A. hydrophila O:34 were isolated and found to be specifically devoid of lipopolysaccharide O antigen. No other cell-surface molecules were involved in phage binding. The host range of bacteriophage PM1 was found to be very narrow, producing plaques only on A. hydrophila strains from serotype O:34.  相似文献   

5.
A "neutral" polymer of glucose, galactose, and 2-acetamido-2-deoxyglucose (molar ratios 1:1:2) has been isolated from the lipopolysaccharide of Serratia marcescens strain C.D.C. 1783-57 (O14:H9). Degradative and spectroscopic studies established that the polysaccharide has a branched tetrasaccharide repeating-unit of the structure shown. The polymer was absent from other strains of serogroup O14 studied, but a polymer differing only in the configuration of the glucose residue has previously been isolated from a strain of S. marcescens O8. The polymer from strain C.D.C. 1783-57 also shares structural features with the Escherichia coli O18 antigen, which is known to be serologically related to the S. marcescens O8 antigen. (Formula: see text).  相似文献   

6.
Klebsiella pneumoniae O5, Escherichia coli O8 and Serratia marcescens 3255 were shown to cross-react in both ELISA and immunoblotting. The cross-reaction appeared to be due to the O antigen of their lipopolysaccharide (LPS). In addition, there was evidence that the reactions of these strains with their homologous antisera were due, in part, to determinants other than O polysaccharide.  相似文献   

7.
Two Salmonella hybrid strains, SL5313 (Salmonella typhimurium with a D.rfb+ gene cluster) and SL5396 (S. enteritidis with a B.rfb+ gene cluster), each expressing both O-antigen 4 (of serogroup B) and O-antigen 9 (of serogroup D) were studied by immunofluorescence using a mixture of O4-specific mouse monoclonal and O9-specific rabbit polyclonal antibodies. Bound antibodies, detected by anti-mouse antibody labelled with fluorescein isothiocyanate and anti-rabbit antibody labelled with tetramethylrhodamine isothiocyanate showed that more than 98% of the bacteria expressed both the O4 and O9 epitopes. Phenol-water-extracted lipopolysaccharide from batch-grown cultures subjected to sugar and methylation analyses by gas-liquid chromatography and mass spectrometry were shown to contain abequose (of the O4 epitope) and tyvelose (of the O9 epitope) in ratios of 1:1.5 and 1:2.5 for SL5313 and SL5396, respectively. Isolated polysaccharide chains, obtained by weak-acid hydrolysis of the lipopolysaccharides, were found to contain both O4 and O9 specificities in the same molecule, since polysaccharide bound to O4 antibody attached to a solid-phase-adsorbed O9-specific antibody and vice versa. This demonstrates that in strains SL5313 and SL5396 O chains containing both O4 repeating units (from S. typhimurium) and O9 units (from S. enteritidis) are present.  相似文献   

8.

Extraintestinal pathogenic Escherichia coli (ExPEC) cause a wide range of clinical diseases such as bacteremia and urinary tract infections. The increase of multidrug resistant ExPEC strains is becoming a major concern for the treatment of these infections and E. coli has been identified as a critical priority pathogen by the WHO. Therefore, the development of vaccines has become increasingly important, with the surface lipopolysaccharide constituting a promising vaccine target. This study presents genetic and structural analysis of clinical urine isolates from Switzerland belonging to the serotype O25. Approximately 75% of these isolates were shown to correspond to the substructure O25B only recently described in an emerging clone of E. coli sequence type 131. To address the high occurrence of O25B in clinical isolates, an O25B glycoconjugate vaccine was prepared using an E. coli glycosylation system. The O antigen cluster was integrated into the genome of E. coli W3110, thereby generating an E. coli strain able to synthesize the O25B polysaccharide on a carrier lipid. The polysaccharide was enzymatically conjugated to specific asparagine side chains of the carrier protein exotoxin A (EPA) of Pseudomonas aeruginosa by the PglB oligosaccharyltransferase from Campylobacter jejuni. Detailed characterization of the O25B-EPA conjugate by use of physicochemical methods including NMR and GC-MS confirmed the O25B polysaccharide structure in the conjugate, opening up the possibility to develop a multivalent E. coli conjugate vaccine containing O25B-EPA.

  相似文献   

9.
The O-specific polysaccharide of Citrobacter braakii PCM 1531 (serogroup O6) was isolated by mild acid hydrolysis of the lipopolysaccharide (LPS) and found to contain d-fucose, l-rhamnose, 4-deoxy-d-arabino-hexose and O-acetyl groups in molar ratios 2 : 1 : 1 : 1. On the basis of methylation analysis and 1H and 13C NMR spectroscopy data, the structure of the branched tetrasaccharide repeating unit of the O-specific polysaccharide was established. Using various serological assays, it was demonstrated that the LPS of strain PCM 1531 is not related serologically to other known 4-deoxy-d-arabino-hexose-containing LPS from Citrobacter PCM 1487 (serogroup O5) or C. youngae PCM 1488 (serogroup O36). Two other strains of Citrobacter, PCM 1504 and PCM 1505, which, together with strain PCM 1531, have been classified in serogroup O6, were shown to be serologically distinct from strain PCM 1531 and should be reclassified into another serogroup.  相似文献   

10.
AIMS: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes. METHODS AND RESULTS: IMS-SA tests detected 132 isolates of presumptive E. coli O26, 112 (85%) were confirmed as serogroup O26 and 102 had the VT genes. One hundred and twenty-two strains of presumptive E. coli O103 were isolated by IMS-SA, 45 (37%) were confirmed as serogroup O103 but only one of these strains was identified as Verocytotoxin-producing E. coli (VTEC). Using the PCR/DNA probe method, 40 strains of VTEC O26 and three strains of VTEC O103 were isolated. IMS-SA identified 21 strains of presumptive E. coli O145, of which only four (19%) were confirmed as serogroup O145. VTEC of this serogroup was not detected by either IMS-SA or PCR/DNA probes. E. coli O111 was not isolated by either method. CONCLUSION: IMS beads were 2.5 times more sensitive than PCR/DNA probe methods for the detection of VTEC O26 in bovine faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: IMS-SA is a sensitive method for detecting specific E. coli serogroups. However, the specificity of this method would be enhanced by the introduction of selective media and the use of tube agglutination tests for confirmation of the preliminary SA results.  相似文献   

11.
A phosphorylated O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of Proteus vulgaris O12 lipopolysaccharide and studied by sugar and methylation analyses, 1H-, 13C- and 31P-NMR spectroscopy, including two-dimensional COSY, TOCSY, NOESY, H-detected 1H, 13C and 1H, 31P heteronuclear multiple-quantum coherence experiments. It was found that the polysaccharide consists of pentasaccharide repeating units connected via a glycerol phosphate group, and has the following structure: where FucNAc is 2-acetamido-2,6-dideoxygalactose and the degree of O-acetylation at position 4 of GalNAc is approximately 25%. Immunochemical studies with P. vulgaris O12 O-antiserum suggested that the lipopolysaccharide studied shares common epitopes with the lipopolysaccharide core of P. vulgaris O8 and with the O-antigens of P. penneri strains 8 and 63.  相似文献   

12.
Escherichia coli strains of group O111 were characterized with respect to sensitivity to complement killing, amount of lipopolysaccharide and O antigen-containing capsule, and distribution of O antigen. All wild-type E. coli O111 strains were resistant to complement killing in the absence of specific antibody. Presensitization of strains with antibody to whole cells (OK antibody), followed by incubation in 50% pooled normal human serum as a source of complement, subdivided wild-type strains into three types: completely resistant, partially resistant, and sensitive. Completely and partially resistant mutants were isolated by cycles of serum killing, starting with one sensitive strain. Completely resistant mutants had no O antigen-containing capsule, but had 50% more lipopolysaccharide than did the parent, and this lipopolysaccharide had 30% fewer lipid A core molecules devoid of O antigen. Partially resistant mutants still had O antigen-containing capsule, but contained 40% more lipopolysaccharide than did the parent; the extent of coverage of lipid A core with O antigen remained unchanged. No correlations were found between outer membrane protein composition and the degree of serum resistance. Since the terminal membrane attack complex (C5b-9) must stably insert into a hydrophobic membrane site to effect killing, we conclude that both increased lipid A core and increased coverage of lipid A core with O antigen preclude access of C5b-9 to lethal sites on the cell surface.  相似文献   

13.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

14.
The O-specific polysaccharide (OPS) isolated from the lipopolysaccharide of Proteus mirabilis O36 was found to have a pentasaccharide repeating unit of the following structure: -->2)-beta-D-Ribf-(1-->4)-beta-D-Galp-(1-->4)-alpha-D-GlcpNAc6Ac-(1-->4)-beta-D-Galp-(1-->3)-alpha-D-GlcpNAc-(1-->. The structure is unique among Proteus OPS, which is in agreement with the classification of this strain into a separate Proteus O-serogroup. Remarkably, the P. mirabilis O36-polysaccharide has the same structure as the OPS of Escherichia coli O153, except that the latter is devoid of O-acetyl groups. The cross-reaction of anti-O36 antibodies with the O-part of E. coli O153 lipopolysaccharide is observed. In the present study, two steps of serotyping Proteus strains are proposed: screening of dry mass with enzyme-linked immunosorbent assay and immunoblot with the crude lipopolysaccharides. This method allowed serotyping of 99 P. mirabilis strains infecting the human urinary tract. Three strains were classified into serogroup O36. The migration pattern of these lipopolysaccharides fraction with long O-specific PSs was similar to the standard laboratory P. mirabilis O36 (Prk 62/57) lipopolysaccharide. The relatively low number of clinical strains belonging to serogroup O36 did not correspond to the presence of anti-P. mirabilis O36 antibodies in the blood donors' sera. Twenty-five percent of tested sera contained a statistically significant elevated level of antibodies reacting with thermostable surface antigens of P. mirabilis O36. The presence and amount of antibodies correlated with Thr399Ile TLR4 polymorphism types (P=0.044).  相似文献   

15.
The phenol-phase soluble cellular lipopolysaccharide isolated by the phenol/water extraction method from Yersinia enterocolitica serotype O:9 cells was shown by hydrolytic, periodate oxidation, methylation and nuclear magnetic resonance studies to be an S-type lipopolysaccharide with a linear O-antigenic polysaccharide of 1,2-linked 4,6-dideoxy-4-formamido-alpha-D-mannopyranosyl units. The serological cross-reactivity between Y. enterocolitica serotype O:9 and the lipopolysaccharides of Vibrio cholerae and Brucella species can now be related to the presence of N-acylated 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residues in their respective O-antigenic chains.  相似文献   

16.
Serological studies using SDS-PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti-Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti-Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with (1)H- and (13)C-NMR spectroscopy, including two-dimensional (1)H,(1)H COSY, TOCSY, NOESY and (1)H,(13)C HSQC experiments, showed that the repeating unit of the OPS has the following structure: [structure: see text]. NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups.  相似文献   

17.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

18.
Actinobacillus suis is an important bacterial pathogen of healthly pigs. An O-antigen (lipopolysaccharide; LPS) serotyping system is being developed to study the prevalence and distribution of representative isolates from both healthy and diseased pigs. In a previous study, we reported that A. suis serogroup O:1 strains express LPS with a (1-->6)-beta-D-glucan O-antigen chain polysaccharide that is similar in structure to a key cell-wall component in yeasts, such as Saccharomyces cerevisiae and Candida albicans. This study describes the O-antigen polysaccharide chemical structure of an O:2 serogroup strain, A. suis H91-0380, which possesses a tetrasaccharide repeating block with the structure: -->3)-beta-D-Galp-(1-->4)-[alpha-D-Galp-(1-->6)]-beta-D-Glcp-(1-->6)-beta-D-GlcpNAc-(1-->. Studies have shown that A. suis serogroup O:2 strains are associated with severely diseased animals; therefore, work on the synthesis of a glycoconjugate vaccine employing O:2 O-antigen polysaccharide to vaccinate pigs against A. suis serogroup O:2 strains is currently underway.  相似文献   

19.
The serological specificity of the neutral polysaccharide possessing extraordinarily strong adjuvanticity originally isolated from the culture supernatant of Klebsiella K1 strain Kasuya has been investigated. Among all of the reference strains (K1-K82) of Klebsiella obtained from the International Escherichia and Klebsiella Center, Statens Seruminstitut, Copenhagen, only 13 strains have been shown to produce the adjuvant polysaccharide by the passive hemagglutination inhibition test. All of these 13 strains belong to the O3 group, and the strains which belong to other O groups of which were not identifiable did not produce it. The gel precipitation test has demonstrated that the adjuvant polysaccharide is antigenically identical to O3 antigen isolated from the cells of the decapsulated mutant (strain LEN 1) of Klebsiella K1 strain Kasuya and to O9 antigen of Escherichia coli isolated from either the culture supernatant or the cells, which has already been shown to be antigenically and structurally identical to the O3 antigen of Klebsiella.  相似文献   

20.
Partially acetylated glucorhamnans have been isolated from the lipopolysaccharides of three strains of Serratia marcescens. The polymer from the reference strain (C.D.C. 864-57) for serogroup O4 has the disaccharide repeating-unit shown below, in which acetylation at position 2 of the rhamnosyl residue is approximately 90% complete. Similar glucorhamnans from the reference strain (C.D.C. 843-57) for serogroup O7 and from a pigmented strain (NM) of serogroup O14 differ only in the configuration of the L-rhamnopyranosyl residue (beta) and the extent of O-acetylation (O7, almost stoichiometric; NM, 80-90%). Glucorhamnans of the second type have been isolated previously from the lipopolysaccharides of other strains of S. marcescens, including the reference strain for serogroup O6 and another pigmented O14 strain (N.C.T.C. 1377). In all cases, the lipopolysaccharide extracts also contained acidic glycans, but the glucorhamnans are believed to constitute the integral side-chains. (Formula: see text).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号