首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.  相似文献   

2.
Infectious pancreatic necrosis virus (IPNV) is the causative agent of infectious pancreatic necrosis (IPN) disease in salmonid fish. Recent studies have revealed variation in virulence between isolates of the Sp serotype, associated with certain residues of the structural protein VP2. The isolates are also highly heterogenic in the coding region of the nonstructural VP5 protein. To study the involvement of this protein in the pathogenesis of disease, we generated three recombinant VP5 mutant viruses using reverse genetics. The "wild-type" recombinant NVI15 (rNVI15) virus is virulent, having a premature stop codon at nucleotide position 427, putatively encoding a truncated 12-kDa VP5 protein, whereas rNVI15-15K virus encodes a 15-kDa protein. Recombinant rNVI15-deltaVP5 virus contains a mutation in the initiation codon of the VP5 gene that ablates the expression of VP5. Atlantic salmon postsmolts were challenged to study the virulence characteristics of the recovered viruses in vivo. The role of VP5 in persistent infection was investigated by challenging Atlantic salmon fry with the recovered viruses, as well as with the low-virulence field strain Sp103 and a naturally occurring VP5-deficient mutant of Sp103. The results show that VP5 is not required for viral replication in vivo, and its absence does not alter the virulence characteristics of the virus or the establishment of persistent IPNV infection.  相似文献   

3.
Infectious pancreatic necrosis virus (IPNV) is a bisegmented, double-stranded RNA (dsRNA) virus of the Birnaviridae family that causes widespread disease in salmonids. Its two genomic segments are encapsulated together with the viral RNA-dependent RNA polymerase, VP1, and the assumed internal protein, VP3, in a single-shell capsid composed of VP2. Major aspects of the molecular biology of IPNV, such as particle assembly and interference with host macromolecules, are as yet poorly understood. To understand the infection process, analysis of viral protein interactions is of crucial importance. In this study, we focus on the interaction properties of VP3, the suggested key organizer of particle assembly in birnaviruses. By applying the yeast two-hybrid system in combination with coimmunoprecipitation, VP3 was proven to bind to VP1 and to self-associate strongly. In addition, VP3 was shown to specifically bind to dsRNA in a sequence-independent manner by in vitro pull-down experiments. The binding between VP3 and VP1 was not dependent on the presence of dsRNA. Deletion analyses mapped the VP3 self-interaction domain within the 101 N-terminal amino acids and the VP1 interaction domain within the 62 C-terminal amino acids of VP3. The C-terminal end was also crucial but not sufficient for the dsRNA binding capacity of VP3. For VP1, the 90 C-terminal amino acids constituted the only dispensable part for maintaining VP3-binding ability. Kinetic analysis revealed the presence of VP1-VP3 complexes prior to the formation of mature virions in IPNV-infected CHSE-214 cells, which indicates a role in promoting the assembly process.  相似文献   

4.
The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites.  相似文献   

5.
Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.  相似文献   

6.
7.
Glycosylation and translocation of the simian rotavirus protein VP7, a resident ER protein, does not occur co-translationally in vivo. In pulse-chase experiments in COS cells, nonglycosylated VP7 was still detectable after a 25-min chase period, although the single glycosylation site was only 18 residues beyond the signal peptide cleavage site. After labeling, glycosylated and nonglycosylated VP7 was recovered in microsomes but the latter was sensitive to trypsin (i.e., the nascent protein became membrane associated) but most of it entered the ER posttranslationally because of a rate-limiting step early in translocation. In contrast with the simian protein, bovine VP7 was glycosylated and translocated rapidly. Thus, delayed translocation per se was not required for retention of VP7 in the ER. By constructing hybrid proteins, it was further shown that the signal peptide together with residues 64-111 of the simian protein caused delayed translocation. The same sequences were also necessary and sufficient for retention of simian VP7 in the ER. The data are consistent with the idea that certain proteins are inserted into the ER membrane in a loop configuration.  相似文献   

8.
C Wychowski  D Benichou    M Girard 《Journal of virology》1987,61(12):3862-3869
A cDNA fragment coding for poliovirus capsid polypeptide VP1 was inserted into a simian virus 40 (SV40) genome in the place of the SV40 VP1 gene and fused in phase to the 3' end of the VP2-VP3 genes. Simian cells were infected with the resulting hybrid virus in the presence of an early SV40 mutant used as a helper. Indirect immunofluorescence analysis of the infected cells using anti-poliovirus VP1 immune serum revealed that the SV40/poliovirus fusion protein was located inside the cell nucleus. Deletions of various lengths were generated in the SV40 VP2-VP3 portion of the hybrid gene using BAL31 nuclease. The resulting virus genomes expressed spliced fusion proteins whose intracellular location was either intranuclear or intracytoplasmic, depending on the presence or absence of VP2 amino acid residues 317 to 323 (Pro-Asn-Lys-Lys-Lys-Arg-Lys). This was confirmed by site-directed mutagenesis of the Lys residue at position 320. Modification of Lys-320 into either Thr or Asn abolished the nuclear accumulation of the fusion protein. It is concluded that at least part of the sequence of VP2 amino acids 317 to 323 allows VP2 and VP3 to remain stably located inside the cell nucleus. The proteins are most probably transported from the cell cytoplasm to the cell nucleus by interaction, with VP1 acting as a carrier.  相似文献   

9.
Infectious pancreatic necrosis viruses (IPNVs) exhibit a wide range of virulence in salmonid species. In previous studies, we have shown that the amino acid residues at positions 217 and 221 in VP2 are implicated in virulence. To pinpoint the molecular determinants of virulence in IPNV, we generated recombinant IPNV strains using the cRNA-based reverse-genetics system. In two virulent strains, residues at positions 217 and 247 were replaced by the corresponding amino acids of a low-virulence strain. The growth characteristics of the recovered chimeric strains in cell culture were similar to the low-virulence strains, and these viruses induced significantly lower mortality in Atlantic salmon fry than the parent strains did in in vivo challenge studies. Furthermore, the virulent strain was serially passaged in CHSE-214 cells 10 times and was completely characterized by nucleotide sequencing. Deduced amino acid sequence analyses revealed a single amino acid substitution of Ala to Thr at position 221 in VP2 of this virus, which became highly attenuated and induced 15% cumulative mortality in Atlantic salmon fry, compared to 68% mortality induced by the virulent parent strain. The attenuated strain grows to higher titers in CHSE cells and can be distinguished antigenically from the wild-type virus by use of a monoclonal antibody. However, the virulent strain passaged 10 times in RTG-2 cells was stable, and it retained its antigenicity and virulence. Our results indicate that residues Thr at position 217 (Thr217) and Ala221 of VP2 are the major determinants of virulence in IPNV of the Sp serotype. Highly virulent isolates possess residues Thr217 and Ala221; moderate- to low-virulence strains have Pro217 and Ala221; and strains containing Thr221 are almost avirulent, irrespective of the residue at position 217.  相似文献   

10.
Polyoma virus complementary RNA, synthesized in vitro by using highly purified Escherichia coli RNA polymerase and nondefective form I polyoma DNA, was translated in a wheat germ cell-free system. Polypeptides were synthesized that comigrated on sodium dodecyl sulfate-polyacrylamide gels with the polyoma capsid proteins VP1 and VP2, although most of the cell-free products were of smaller molecular weights. The VP1-size protein specifically immunoprecipitated with anti-polyoma virus serum, and upon digestion by trypsin yielded [35S]methionine-labeled tryptic peptides that co-chromatographed with the [3H]methionine-labeled tryptic peptides of virion-derived VP1 on both cation-exchange and anion-exchange resins. The VP2-size in vitro product contained all the virion VP2 methionine-labeled tryptic peptides, as shown by cation- and anion-exchange chromatography and two-dimensional fingerprinting on cellulose. We conclude that full-length polyoma VP1 and VP2 are synthesized in response to complementary RNA and consequently that the viral capsid proteins VP1, VP2, and VP3 are entirely virus coded.  相似文献   

11.
The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine.  相似文献   

12.
Phosphorylation of VP30 impairs ebola virus transcription   总被引:9,自引:0,他引:9  
  相似文献   

13.
Hafezi W  Bernard E  Cook R  Elliott G 《Journal of virology》2005,79(20):13082-13093
Many steps along the herpesvirus assembly and maturation pathway remain unclear. In particular, the acquisition of the virus tegument is a poorly understood process, and the molecular interactions involved in tegument assembly have not yet been defined. Previously we have shown that the two major herpes simplex virus tegument proteins VP22 and VP16 are able to interact, although the relevance of this to virus assembly is not clear. Here we have constructed a number of recombinant viruses expressing N- and C-terminal truncations of VP22 and have used them to identify regions of the protein involved in its assembly into the virus structure. Analysis of the packaging of these VP22 variants into extracellular virions revealed that the C terminus of VP22 is absolutely required for this process, with removal of the C-terminal 89 residues abrogating its incorporation. However, while these 89 residues alone were sufficient for specific incorporation of small amounts of VP22 into the tegument, efficient packaging of VP22 to the levels of full-length protein required an additional 52 residues of the protein. Coimmunoprecipitation assays indicated that these 52 residues also contained the interaction domain for VP16. Furthermore, analysis of the subcellular localization of the mutant forms of VP22 revealed that only those truncations that were efficiently assembled formed characteristic cytoplasmic trafficking complexes, suggesting that these complexes may represent the cellular location for VP22 assembly into the virus. Taken together, these results suggest that there are two determinants involved in the packaging of VP22-a C-terminal domain and an internal VP16 interaction domain, both of which are required for the efficient recruitment of VP22 to sites of virus assembly.  相似文献   

14.
M Kutubuddin  J Simons    M Chow 《Journal of virology》1992,66(5):3042-3047
Poliovirus-specific T lymphocytes were isolated from virus-immunized mice of different H-2 haplotypes. Immunological characterization of this population indicates that the effector population involved in the observed poliovirus-specific proliferative response was that of CD4-positive T-helper cells. Proliferative responses also were induced within these T-lymphocyte populations upon stimulation with either purified VP1 capsid protein or VP1 synthetic peptides. By using these synthetic peptides, several T-helper epitopes were identified. Generally, proliferative responses were observed in three regions of VP1. Two regions spanning VP1 residues 86 to 120 and 201 to 241 were recognized by T lymphocytes from BALB/c (H-2d), C57BL/6 (H-2b), and C3H/HeJ (H-2k) backgrounds. Analyses using synthetic peptides of nonoverlapping sequences indicated that the region spanning residues 201 to 241 may contain several T epitopes and may account for the strong proliferative response observed. In addition, for two of the three haplotypes examined, T epitopes were observed within residues 7 to 24 of VP1. Additional epitopes which appeared to be restricted to specific H-2 backgrounds were identified. T epitopes within VP1 that are common between different strains of mice appeared to lie within previously identified neutralizing antigenic sites in poliovirus.  相似文献   

15.
A truncated form of the structural protein VP2 (truncVP2) of infectious pancreatic necrosis (IPN) virus encompassing amino acids 147-307 was expressed in bacterial, yeast, piscine and mammalian cells. All four recombinant antigens were recognised by a VP2-specific monoclonal antibody by ELISA and immunoblot analysis. However, the minimum amount of r-truncVP2 needed for detection by these methods varies depending on the cell type used for expression. Furthermore, all four recombinant preparations, when used to immunise Atlantic salmon, were capable of inducing antibodies reactive with whole IPNV in ELISA.  相似文献   

16.
It is well established that glycosylation is essential for assembly of enveloped viruses, but no information is yet available as to the function of carbohydrates on the nonenveloped but glycosylated rotavirus. We show that tunicamycin and, more pronouncedly, a combination of tunicamycin and brefeldin A treatment caused misfolding of the luminal VP7 protein, leading to interdisulfide bond aggregation. While formation of VP7 aggregates could be prevented under reducing conditions, they reoccurred in less than 30 min after a shift to an oxidizing milieu. Furthermore, while glycosylated VP7 interacted during maturation with protein disulfide isomerase, nonglycosylated VP7 did not, suggesting that glycosylation is a prerequisite for protein disulfide isomerase interaction. While native NSP4, which does not possess S-S bonds, was not dependent on N-linked glycosylation or on protein disulfide isomerase assistance for maturation, nonglycosylated NSP4 was surprisingly found to interact with protein disulfide isomerase, further suggesting that protein disulfide isomerase can act both as an enzyme and as a chaperone. In conclusion, our data suggest that the major function of carbohydrates on VP7 is to facilitate correct disulfide bond formation and protein folding.  相似文献   

17.
Infectious pancreatic necrosis virus (IPNV) is a member of the family Birnaviridae that has been linked to high mortalities in juvenile salmonids and postsmolt stages of Atlantic salmon (Salmo salar L.) after transfer to seawater. IPN vaccines have been available for a long time but their efficacy has been variable. The reason for the varying immune response to these vaccines has not well defined and studies on the importance of using vaccine trains homologous to the virulent field strain has not been conclusive. In this study we prepared one vaccine identical to the virulent Norwegian Sp strain NVI-015 (NCBI: 379740) (T217A221T247 of VP2) and three other vaccine strains developed using the same genomic backbone altered by reverse genetics at three residues yielding variants, T217T221T247, P217A221A247, P217T221A247. These 4 strains, differing in these three positions only, were used as inactivated, oil-adjuvanted vaccines while two strains, T217A221T247 and P217T221A247, were used as live vaccines. The results show that these three residues of the VP2 capsid play a key role for immunogenicity of IPNV vaccines. The virulent strain for inactivated vaccines elicited the highest level of virus neutralization (VN) titers and ELISA antibodies. Interestingly, differences in immunogenicity were not reflected in differences in post challenge survival percentages (PCSP) for oil-adjuvanted, inactivated vaccines but clearly so for live vaccines (TAT and PTA). Further post challenge viral carrier state correlated inversely with VN titers at challenge for inactivated vaccines and prevalence of pathology in target organs inversely correlated with protection for live vaccines. Overall, our findings show that a few residues localized on the VP2-capsid are important for immunogenicity of IPNV vaccines.  相似文献   

18.
J T Patton  J Hua    E A Mansell 《Journal of virology》1993,67(8):4848-4855
Because the rotavirus spike protein VP4 contains conserved Cys residues at positions 216, 318, 380, and 774 and, for many animal rotaviruses, also at position 203, we sought to determine whether disulfide bonds were structural elements of VP4. Electrophoretic analysis of untreated and trypsin-treated rhesus rotavirus (RRV) and simain rotavirus SA11 in the presence and absence of the reducing agent dithioerythritol revealed that VP4 and its cleavage fragments VP5* and VP8* possessed intrachain disulfide bonds. Given that the VP8* fragments of RRV and SA11 contain only two Cys residues, those at positions 203 and 216, these data indicated that these two residues were covalently linked. Electrophoretic examination of truncated species of VP4 and VP4 containing Cys-->Ser mutations synthesized in reticulocyte lysates provided additional evidence that Cys-203 and Cys-216 in VP8* of RRV were linked by a disulfide bridge. VP5* expressed in vitro was able to form a disulfide bond analogous to that in the VP5* fragment of trypsin-treated RRV. Analysis of a Cys-774-->Ser mutant of VP5* showed that, while it was able to form a disulfide bond, a Cys-318-->Ser mutant of VP5* was not. These results indicated that the VP4 component of all rotaviruses, except B223, contains a disulfide bond that links Cys-318 and Cys-380 in the VP5* region of the protein. This bond is located between the trypsin cleavage site and the putative fusion domain of VP4. Because human rotaviruses lack Cys-203 and, hence, unlike many animal rotaviruses cannot possess a disulfide bond in VP8*, it is apparent that VP4 is structurally variable in nature, with human rotaviruses generally containing one disulfide linkage and animal rotaviruses generally containing two such linkages. Considered with the results of anti-VP4 antibody mapping studies, the data suggest that the disulfide bond in VP5* exists within the 2G4 epitope and may be located at the distal end of the VP4 spike on rotavirus particles.  相似文献   

19.
B P Mahon  K Katrak    K H Mills 《Journal of virology》1992,66(12):7012-7020
A panel of poliovirus-specific murine CD4+ T-cell clones has been established from both BALB/c (H-2d) and CBA (H-2k) mice immunized with Sabin vaccine strains of poliovirus serotype 1, 2, or 3. T-cell clones were found to be either serotype specific or cross-reactive between two or all three serotypes. Specificity analysis against purified poliovirus proteins demonstrated that T-cell clones recognized determinants on the surface capsid proteins VP1, VP2, and VP3 and the internal capsid protein VP4. Panels of overlapping synthetic peptides were used to identify eight distinct T-cell epitopes. One type 3-specific T-cell clone recognized an epitope within amino acids 257 and 264 of VP1. Three T-cell epitopes corresponding to residues 14 to 28, 189 to 203, and 196 to 210 were identified on VP3 of poliovirus type 2. The remaining four T-cell epitopes were mapped to an immunodominant region of VP4, encompassed within residues 6 and 35 and recognized by both H-2d and H-2k mice. The epitopes on VP4 were conserved between serotypes, and this may account for the predominantly cross-reactive poliovirus-specific T-cell response observed with polyclonal T-cell populations. In contrast, T-cell clones that recognize epitopes on VP1 or VP3 were largely serotype specific; single or multiple amino acid substitutions were found to be critical for T-cell recognition.  相似文献   

20.
Norwalk virus (NV) is the prototype strain of a group of noncultivable human caliciviruses responsible for epidemic outbreaks of acute gastroenteritis. The capsid protein VP1 is synthesized from a subgenomic RNA that contains two open reading frames (ORFs), ORF2 and ORF3, and the 3' untranslated region (UTR). ORF2 and ORF3 code for the capsid protein (VP1) and a small structural basic protein (VP2), respectively. We discovered that the yields of virus-like particles (VLPs) composed of VP1 are significantly reduced when this protein is expressed from ORF2 alone. To determine how the 3' terminus of the NV subgenomic RNA regulates VP1 expression, we compared VP1 expression levels by using recombinant baculovirus constructs containing different 3' elements. High VP1 levels were detected by using a recombinant baculovirus that contained ORF2, ORF3, and the 3'UTR (ORF2+3+3'UTR). In contrast, expression of VP1 from constructs that lacked the 3'UTR (ORF2+3), ORF3 (ORF2+3'UTR), or both (ORF2 alone) was highly reduced. Elimination of VP2 synthesis from the subgenomic RNA by mutation resulted in VP1 levels similar to those obtained with the ORF2 construct alone, suggesting a cis role for VP2 in upregulation of VP1 expression levels. Comparisons of the kinetics of RNA and capsid protein expression levels by using constructs with or without ORF3 or the 3'UTR revealed that the 3'UTR increased the levels of VP1 RNA, whereas the presence of VP2 resulted in increased levels of VP1. Furthermore, VP2 increased VP1 stability and protected VP1 from disassembly and protease degradation. The increase in VP1 expression levels caused by the presence of VP2 in cis was also observed in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号