首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A cDNA clone coding for a sea urchin histone H2A variant has been isolated. The coding region of the clone has been sequenced and the sequence found to be closely related to the H2A.F sequence in chickens. The nucleotide sequence of the sea urchin H2A.F/Z is 74% conserved when compared to chicken H2A.F and 51% conserved compared to sea urchin H2A early and 60% compared to sea urchin H2A late. The nucleotide-derived amino acid comparisons show that H2A.F/Z is 97% homologous with H2A.F in chickens and 57% and 56% homologous when compared to sea urchin H2A early and late respectively. There are between 3-6 copies of the H2A.F/Z sequence in the S. purpuratus genome. The H2A.F/Z gene sequence codes for the previously identified H2A.Z protein. All embryonic stages and adult tissues tested contain mRNA for H2A.F/Z. The mRNA appears in the poly A+ RNA fraction after chromatography over oligo dT cellulose.  相似文献   

2.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

3.
Structural comparisons of mouse histones 2A.X and 2A.Z with 2A.1 and 2A.2   总被引:4,自引:0,他引:4  
The tryptic peptide patterns of the recently described H2A species H2A.X and H2A.Z from mouse were compared with the tryptic peptide patterns of the major mouse H2A's, H2A.1 and H2A.2. The identities of the H2A.1 peptides were determined by comparing their in vivo labeling with various 14C-labeled amino acids with the expected labeling determined from the known sequence. All the H2A.1 tryptic peptides larger than dipeptides were accounted for. The procedure was repeated for H2A.2, H2A.X and H2A.Z. H2A.X was found to have large regions of sequence identical to that of H2A.1 with the variability occurring mainly near the N and C termini. Mouse H2A.X had some sequence characteristics found in the sequenced H2A's of trout and sea urchin. In contrast, H2A.Z was found to have only two peptides in common with H2A.1; in addition, the labeling patterns of the non-identical peptides were too different to suggest analogous peptides. We conclude from these studies that H2A.Z differs considerably from H2A.1 in major portions of its sequence.  相似文献   

4.
5.
6.
A regulatory sequence near the 3'' end of sea urchin histone genes.   总被引:27,自引:11,他引:16       下载免费PDF全文
The 3' flanking sequences of all five histone genes have been sequenced in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. A large (23 bp) and a small (10 bp) conserved sequence was found by sequence comparison, some 29-40 bp downstream from the termination codon. 12 bases of the larger homology block show a dyad symmetry. The available sequences of clone h22 of the same species and those of the histone clones pSp2 and pSp17 of Strongylocentrotus purpuratus, another sea urchin species, fit well into this comparison. Two types of sequences are involved in the dyad symmetry; one is H1, H3 and H4 specific, the other is H2A and H2B specific. If these conserved sequences are transcribed, a hairpin loop could form in the RNA molecules. This secondary structure might serve as a recognition signal for a regulatory protein.  相似文献   

7.
R H Cohn  L H Kedes 《Cell》1979,18(3):855-864
The linear arrangement and lengths of the spacers and coding regions in the two nonallelic histone gene variant clusters of L. pictus are remarkably homologous by R loop analysis and are similar in general topography to the histone gene repeat units of other sea urchins examined to date. No interventing sequences were detected. The coding regions of these two histone gene variants share considerable sequence homology; however, there are areas of nonhomology in every spacer region and the lengths of the nonhomologous spacers between the H2A and H1 genes are not the same for the two repeat unit classes (inter-gene heterogeneity). Combining length measurements obtained with both R loops and heteroduplexes suggests that the DNA sequences of the analogous leader regions for the two H1 mRNAs are nonhomologous. Similar observations were made for the H4 leader sequences, as well as the trailer region on H2B. S. purpuratus spacer DNA segments share little sequence homology with L. pictus; however, the analgous coding (and possibly flanking) regions have conserved their sequences. The various coding and spacer regions within a repeat unit do not share DNA sequences. Thus certain areas in the sea urchin histone gene repeat units have been highly conserved during evolution, while other areas have been allowed to undergo considerable sequence change not only between species but within a species.  相似文献   

8.
9.
10.
The sea urchin H2A.F/Z histone is a member of a subclass of highly conserved H2A variants. Sequence analysis confirms that H2A.F/Z mRNA is polyadenylated. In situ hybridization studies demonstrate that maternal H2A.F/Z message is stored in the egg cytoplasm and present at equal levels in all cells of the mesenchyme blastula-stage embryo, suggesting that H2A.F/Z is not coordinately regulated with DNA synthesis. When blastula-stage embryos were exposed to DNA synthesis inhibitors, no effect on the steady-state level of H2A.F/Z mRNA was observed, while the level of late class H2B mRNA decreased substantially. These results provide evidence that the basal mode of regulation of this unusual histone variant is conserved evolutionarily.  相似文献   

11.
12.
13.
14.
15.
16.
17.
We have made a detailed molecular analysis of the reactions leading to the formation of mature 3' ends in mammalian histone mRNAs. Using two analytical protocols we have identified an essential sequence motif in the downstream spacer which is consistently present, albeit in diffuse form, mammalian histone genes. Tampering with this sequence element completely abolishes 3' processing. However, 3' cleavage in vitro, although at a very much reduced rate, can be detected when the conserved hairpin is deleted from histone precursor mRNAs. U7 snRNA, previously shown to be essential for the maturation of sea urchin histone messages, was isolated from murine cells and the sequence was determined. The approximately 63-nucleotide, trimethyl-G-capped, murine U7 snRNA possesses a sequence shown in the sea urchin U7 to be required for Sm-precipitability, and like the sea urchin U7, the 3' end of murine U7 is encased in a hairpin structure. The 5' sequence of murine U7 exhibits extensive sequence complementarity to the conserved downstream motif of the histone precursor. As expected, oligo-nucleotide-directed RNase H cleavage of this portion of murine U7 inhibits the in vitro processing reaction. These experiments identify a set of specific contacts between mammalian U7 and histone precursor RNA which is indispensable for the maturation reaction.  相似文献   

18.
19.
20.
The nucleotide sequences of cDNAs for the evolutionarily diverged but highly conserved basal H2A isoprotein, H2A.Z, have been determined for the rat, cow, and human. As a basal histone, H2A.Z is synthesized throughout the cell cycle at a constant rate, unlinked to DNA replication, and at a much lower rate in quiescent cells. Each of the cDNA isolates encodes the entire H2A.Z polypeptide. The human isolate is about 1.0 kilobases long. It contains a coding region of 387 nucleotides flanked by 106 nucleotides of 5'UTR and 376 nucleotides of 3'UTR, which contains a polyadenylation signal followed by a poly A tail. The bovine and rat cDNAs have 97 and 94% nucleotide positional identity to the human cDNA in the coding region and 98% in the proximal 376 nucleotides of the 3'UTR which includes the polyadenylation signal. A potential stem-forming sequence imbedded in a direct repeat is found centered at 261 nucleotides into the 3'UTR. Each of the cDNA clones could be transcribed and translated in vitro to yield H2A.Z protein. The mammalian H2A.Z cDNA coding sequences are approximately 80% similar to those in chicken and 75% to those in sea urchin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号