首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Despite a growing repertoire of membrane protein structures (currently ∼120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.  相似文献   

2.
Ward AB  Guvench O  Hills RD 《Proteins》2012,80(9):2178-2190
Coarse-grained (CG) modeling has proven effective for simulating lipid bilayer dynamics on scales of biological interest. Modeling the dynamics of flexible membrane proteins within the bilayer, on the other hand, poses a considerable challenge due to the complexity of the folding or conformational landscape. In the present work, the multiscale coarse-graining method is applied to atomistic peptide-lipid "soup" simulations to develop a general set of CG protein-lipid interaction potentials. The reduced model was constructed to be compatible with recent solvent-free CG models developed for protein-protein folding and lipid-lipid model bilayer interactions. The utility of the force field was demonstrated by molecular dynamics simulation of the MsbA ABC transporter in a mixed DOPC/DOPE bilayer. An elastic network was parameterized to restrain the MsbA dimer in its open, closed and hydrolysis intermediate conformations and its impact on domain flexibility was examined. Conformational stability enabled long-time dynamics simulation of MsbA freely diffusing in a 25 nm membrane patch. Three-dimensional density analysis revealed that a shell of weakly bound "annular lipids" solvate the membrane accessible surface of MsbA and its internal substrate-binding chamber. The annular lipid binding modes, along with local perturbations in head group structure, are a function of the orientation of grooves formed between transmembrane helices and may influence the alternating access mechanism of substrate entry and translocation.  相似文献   

3.
Buchaklian AH  Funk AL  Klug CS 《Biochemistry》2004,43(26):8600-8606
MsbA is the ABC transporter for lipid A and is found in the inner membranes of Gram-negative bacteria such as Escherichia coli. Without MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang, and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, many questions remain concerning its mechanism of transport. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful approach for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions within a protein. The quaternary structure of the resting state of the MsbA homodimer reconstituted into lipid membranes has been evaluated by SDSL EPR spectroscopy and chemical cross-linking techniques. SDSL and cross-linking results are consistent with the controversial resting state conformation of the MsbA homodimer found in the crystal structure, with the tips of the transmembrane helices forming a dimer interface. The position of MsbA in the membrane bilayer along with the relative orientation of the transmembrane helical bundles with respect to one another has been determined. Characterization of the resting state of the MsbA homodimer is essential for future studies on the functional dynamics of this membrane transporter.  相似文献   

4.
The human P-glycoprotein (MDR1/P-gp) is an ATP-binding cassette (ABC) transporter involved in cellular response to chemical stress and failures of anticancer chemotherapy. In the absence of a high-resolution structure for P-gp, we were interested in the closest P-gp homolog for which a crystal structure is available: the bacterial ABC transporter MsbA. Here we present the molecular dynamics simulations performed on the transmembrane domain of the open-state MsbA in a bilayer composed of palmitoyl oleoyl phosphatidylethanolamine lipids. The system studied contained more than 90,000 atoms and was simulated for 50 ns. This simulation shows that the open-state structure of MsbA can be stable in a membrane environment and provides invaluable insights into the structural relationships between the protein and its surrounding lipids. This study reveals the formation of a semipore-like structure stabilized by two key phospholipids which interact with the hinge region of the protein during the entire simulation. Multiple sequence alignments of ABC transporters reveal that one of the residues involved in the interaction with these two phospholipids are under a strong selection pressure specifically applied on the bacterial homologs of MsbA. Hence, comparison of molecular dynamics simulation and phylogenetic data appears as a powerful approach to investigate the functional relevance of molecular events occurring during simulations.  相似文献   

5.
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility.  相似文献   

6.
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme–substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme–product complex (trapped by ADP-vanadate). 20 Å resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.  相似文献   

7.
Molecular dynamics simulations of membrane proteins are making rapid progress, because of new high-resolution structures, advances in computer hardware and atomistic simulation algorithms, and the recent introduction of coarse-grained models for membranes and proteins. In addition to several large ion channel simulations, recent studies have explored how individual amino acids interact with the bilayer or snorkel/anchor to the headgroup region, and it has been possible to calculate water/membrane partition free energies. This has resulted in a view of bilayers as being adaptive rather than purely hydrophobic solvents, with important implications, for example, for interaction between lipids and arginines in the charged S4 helix of voltage-gated ion channels. However, several studies indicate that the typical current simulations fall short of exhaustive sampling, and that even simple protein-membrane interactions require at least ca. 1mus to fully sample their dynamics. One new way this is being addressed is coarse-grained models that enable mesoscopic simulations on multi-mus scale. These have been used to model interactions, self-assembly and membrane perturbations induced by proteins. While they cannot replace all-atom simulations, they are a potentially useful technique for initial insertion, placement, and low-resolution refinement.  相似文献   

8.
Buchaklian AH  Klug CS 《Biochemistry》2005,44(14):5503-5509
MsbA is an ABC transporter that transports lipid A across the inner membrane of Gram-negative bacteria such as Escherichia coli. Without functional MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, several functionally important motifs common to ABC transporters are unresolved in the crystal structure. The Walker A domain, one of the ABC transporter consensus motifs that is directly involved in ATP binding, is located within a large unresolved region of the MsbA ATPase domain. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions. MsbA reconstituted into lipid membranes has been evaluated by EPR spectroscopy, and it has been determined that the Walker A domain forms an alpha-helical structure, which is consistent with the structure of this motif observed in other crystallized ABC transporters. In addition, the interaction of the Walker A residues with ATP before, during, and after hydrolysis was followed using SDSL EPR spectroscopy in order to identify the residues directly involved in substrate binding and hydrolysis.  相似文献   

9.
Zhang Z  Wriggers W 《Biochemistry》2011,50(12):2144-2156
Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play important roles in cell proliferation and signaling. The EGFR extracellular domain (sEGFR) forms a dimer upon the binding of ligands, such as epidermal growth factor (EGF) and transforming growth factor α (TGFα). In this study, multiple molecular dynamics (MD) simulations of the 2:2 EGF·sEGFR3-512 dimer and the 2:2 TGFα·sEGFR3-512 dimer were performed in solvent and crystal environments. The simulations of systems comprising up to half a million atoms reveal part of the structural dynamics of which sEGFR dimers are capable. The solvent simulations consistently exhibited a prominent conformational relaxation from the initial crystal structures on the nanosecond time scale, leading to symmetry breaking and more extensive contacts between the two sEGFR monomers. In the crystal control simulation, this symmetry breaking and compaction was largely suppressed by crystal packing contacts. The simulations also provided evidence that the disordered domain IV of sEGFR may act as a stabilizing spacer in the dimer. Thus, the simulations suggest that the sEGFR dimer can take diverse configurations in solvent environments. These biologically relevant conformations of the EGFR signal transduction network can be controlled by contacts among the structural domains of sEGFR and its ligands.  相似文献   

10.
Molecular dynamics simulations of an atomic model of the transmembrane domain of the oncogenic ErbB2 receptor dimer embedded in an explicit dimyristoylphosphatidylcholine (DMPC) bilayer were performed for more than 4 ns. The oncogenic Glu mutation in the membrane spanning segment plays a major role in tyrosine kinase activity and receptor dimerization, and is thought to be partly responsible for the structure of the transmembrane domain of the active receptor. MD results show that the interactions between the two transmembrane helices are characteristic of a left-handed packing as previously demonstrated from in vacuo simulations. Moreover, MD results reveal the absence of persistent hydrogen bonds between the Glu side chains in a membrane environment, which raise the question of the ability for Glu alone to stabilize the TM domain of the ErbB2 receptor. Interestingly the formation of the alpha-pi motif in the two ErbB2 transmembrane helices confirms the concept of intrinsic sequence-induced conformational flexibility. From a careful analysis of our MD results, we suggest that the left-handed helix-helix packing could be the key to correctly orient the intracellular domain of the activated receptor dimer. The prediction of such interactions from computer simulations represents a new step towards the understanding of signaling mechanisms.  相似文献   

11.
Cuthbertson JM  Bond PJ  Sansom MS 《Biochemistry》2006,45(48):14298-14310
The glycophorin helix dimer is a paradigm for the exploration of helix-helix interactions in integral membrane proteins. Two NMR structures of the dimer are known, one in a detergent micelle and one in a lipid bilayer. Multiple (4 x 50 ns) molecular dynamics simulations starting from each of the two NMR structures, with each structure in either a dodecyl phosphocholine (DPC) micelle or a dimyristoyl phosphatidylcholine (DMPC) bilayer, have been used to explore the conformational dynamics of the helix dimer. Analysis of the helix-helix interaction, mediated by the GxxxG sequence motif, suggests convergence of the simulations to a common model. This is closer to the NMR structure determined in a bilayer than to micelle structure. The stable dimer interface in the final simulation model is characterized by (i) Gly/Gly packing and (ii) Thr/Thr interhelix H-bonds. These results demonstrate the ability of extended molecular dynamics simulations in a lipid bilayer environment to refine membrane protein structures or models derived from experimental data obtained in protein/detergent micelles.  相似文献   

12.
The epidermal growth factor receptor (EGFR) plays a key role in regulating cell proliferation, migration, and differentiation, and aberrant EGFR signaling is implicated in a variety of cancers. EGFR signaling is triggered by extracellular ligand binding, which promotes EGFR dimerization and activation. Ligand-binding measurements are consistent with a negatively cooperative model in which the ligand-binding affinity at either binding site in an EGFR dimer is weaker when the other site is occupied by a ligand. This cooperativity is widely believed to be central to the effects of ligand concentration on EGFR-mediated intracellular signaling. Although the extracellular portion of the human EGFR dimer has been resolved crystallographically, the crystal structures do not reveal the structural origin of this negative cooperativity, which has remained unclear. Here we report the results of molecular dynamics simulations suggesting that asymmetrical interactions of the two binding sites with the membrane may be responsible (perhaps along with other factors) for this negative cooperativity. In particular, in our simulations the extracellular domains of an EGFR dimer spontaneously lay down on the membrane in an orientation in which favorable membrane contacts were made with one of the bound ligands, but could not be made with the other. Similar interactions were observed when EGFR was glycosylated, as it is in vivo.  相似文献   

13.
The evolutionary conserved YidC is a unique dual-function membrane protein that adopts insertase and chaperone conformations. The N-terminal helix of Escherichia coli YidC functions as an uncleaved signal sequence and is important for membrane insertion and interaction with the Sec translocon. Here, we report the first crystal structure of Thermotoga maritima YidC (TmYidC) including the N-terminal amphipathic helix (N-AH) (PDB ID: 6Y86). Molecular dynamics simulations show that N-AH lies on the periplasmic side of the membrane bilayer forming an angle of about 15° with the membrane surface. Our functional studies suggest a role of N-AH for the species-specific interaction with the Sec translocon. The reconstitution data and the superimposition of TmYidC with known YidC structures suggest an active insertase conformation for YidC. Molecular dynamics (MD) simulations of TmYidC provide evidence that N-AH acts as a membrane recognition helix for the YidC insertase and highlight the flexibility of the C1 region underlining its ability to switch between insertase and chaperone conformations. A structure-based model is proposed to rationalize how YidC performs the insertase and chaperone functions by re-positioning of N-AH and the other structural elements.  相似文献   

14.
MsbA is an essential ATP-binding cassette half-transporter in the cytoplasmic membrane of the gram-negative Escherichia coli and is required for the export of lipopolysaccharides (LPS) to the outer membrane, most likely by transporting the lipid A core moiety. Consistent with the homology of MsbA to the multidrug transporter LmrA in the gram-positive Lactococcus lactis, our recent work in E. coli suggested that MsbA might interact with multiple drugs. To enable a more detailed analysis of multidrug transport by MsbA in an environment deficient in LPS, we functionally expressed MsbA in L. lactis. MsbA expression conferred an 86-fold increase in resistance to the macrolide erythromycin. A kinetic characterization of MsbA-mediated ethidium and Hoechst 33342 transport revealed apparent single-site kinetics and competitive inhibition of these transport reactions by vinblastine with K(i) values of 16 and 11 microM, respectively. We also detected a simple noncompetitive inhibition of Hoechst 33342 transport by free lipid A with a K(i) of 57 microM, in a similar range as the K(i) for vinblastine, underscoring the relevance of our LPS-less lactococcal model for studies on MsbA-mediated drug transport. These observations demonstrate the ability of heterologously expressed MsbA to interact with free lipid A and multiple drugs in the absence of auxiliary E. coli proteins. Our transport data provide further functional support for direct LPS-MsbA interactions as observed in a recent crystal structure for MsbA from Salmonella enterica serovar Typhimurium (C. L. Reyes and G. Chang, Science 308:1028-1031, 2005).  相似文献   

15.
Insertion and formation of membrane proteins involves the interaction of protein helices with one another in lipid environments. Researchers have studied glycophorin A (GpA) transmembrane helices embedded in sodium dodecyl sulfate (SDS) micelles to identify contacts significant for helix dimerization. However, a detailed picture of the conformation and dynamics of the GpA-SDS system cannot be obtained solely through experiment. Molecular dynamics simulations of SDS and a GpA dimer can provide an atomic-level picture of SDS aggregation and helix association. We report 2.5-ns simulations of GpA wild-type and mutants in a preformed micelle as well as a 32-ns simulation showing the formation of a complete micelle around wild-type GpA from an initially random placement of SDS molecules in an aqueous environment. In the latter case, an initial instability of GpA helices in water is reversed after the helices become surrounded by SDS. The properties of the spontaneously formed micelle surrounding the GpA are indistinguishable from those of the preformed micelle surrounding the GpA dimer.  相似文献   

16.
BNIP3 is a mitochondrial 19-kDa proapoptotic protein, a member of the Bcl-2 family. It has a single COOH-terminal transmembrane (TM) alpha-helical domain, which is required for membrane targeting, proapoptotic activity, hetero- and homo-dimerization in membrane. The role and the molecular details of association of TM helices of BNIP3 are yet to be established. Here, we present a molecular modeling study of helix interactions in its membrane domain. The approach combines Monte Carlo conformational search in an implicit hydrophobic slab followed by molecular dynamics simulations in a hydrated full-atom lipid bilayer. The former technique was used for exhaustive sampling of the peptides' conformational space and for generation of putative "native-like" structures of the dimer. The latter ones were taken as realistic starting points to assess stability and dynamic behavior of the complex in explicit lipid-water surrounding. As a result, several groups of tightly packed right-handed structures of the dimer were proposed. They have almost similar helix-helix interface, which includes the motif A(176)xxxG(180)xxxG(184) and agrees well with previous mutagenesis data and preliminary NMR analysis. Molecular dynamics simulations of these structures reveal perfect adaptation of most of them to heterogeneous membrane environment. A remarkable feature of the predicted dimeric structures is the occurrence of a cluster of H-bonded histidine 173 and serines 168 and 172 on the helix interface, near the N-terminus. Because of specific polar interactions between the monomers, this part of the dimer has no such dense packing as the C-terminal one, thus allowing penetration of water from the extramembrane side into the membrane interior. We propose that the ionization state of His(173) can mediate structural and dynamic properties of the dimer. This, in turn, may be related to pH-dependent proapoptotic activity of BNIP3, which is triggering on by acidosis appearing under hypoxic conditions.  相似文献   

17.
Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.  相似文献   

18.
Ishima R  Louis JM 《Proteins》2008,70(4):1408-1415
Internal motion in proteins fulfills a multitude of roles in biological processes. NMR spectroscopy has been applied to elucidate protein dynamics at the atomic level, albeit at a low resolution, and is often complemented by molecular dynamics simulation. However, it is critical to justify the consistency between simulation results and conclusions often drawn from multiple experiments in which uncertainties arising from assumed motional models may not be explicitly evaluated. To understand the role of the flaps of HIV-1 protease dimer in substrate recognition and protease function, many molecular dynamics simulations have been performed. The simulations have resulted in various proposed models of the flap dynamics, some of which are more consistent than others with our working model previously derived from experiments. However, using the working model to discriminate among the simulation results is not straightforward because the working model was derived from a combination of NMR experiments and crystal structure data. In this study, we use the NMR chemical shifts and relaxation data of the protease "monomer" rather than structural data to narrow down the possible conformations of the flaps of the "dimer". For the first time, we show that the tips of the flaps in the unliganded protease dimer interact with each other in solution. Accordingly, we discuss the consistency of the simulations with the model derived from all experimental data.  相似文献   

19.
Retroviral integrases are reported to form alternate dimer assemblies like the core–core dimer and reaching dimer. The core–core dimer is stabilized predominantly by an extensive interface between two catalytic core domains. The reaching dimer is stabilized by N-terminal domains that reach to form intermolecular interfaces with the other subunit’s core and C-terminal domains (CTD), as well as CTD–CTD interactions. In this study, molecular dynamics (MD), Brownian dynamics (BD) simulations, and free energy analyses, were performed to elucidate determinants for the stability of the reaching dimer forms of full-length Avian Sarcoma Virus (ASV) and Human Immunodeficiency Virus (HIV) IN, and to examine the role of the C-tails (the last ~16–18 residues at the C-termini) in their structural dynamics. The dynamics of an HIV reaching dimer derived from small angle X-ray scattering and protein crosslinking data, was compared with the dynamics of a core–core dimer model derived from combining the crystal structures of two-domain fragments. The results showed that the core domains in the ASV reaching dimer express free dynamics, whereas those in the HIV reaching dimer are highly stable. BD simulations suggest a higher rate of association for the HIV core–core dimer than the reaching dimer. The predicted stability of these dimers was therefore ranked in the following order: ASV reaching dimer < HIV reaching dimer < composite core–core dimer. Analyses of MD trajectories have suggested residues that are critical for intermolecular contacts in each reaching dimer. Tests of these predictions and insights gained from these analyses could reveal a potential pathway for the association and dissociation of full-length IN multimers.  相似文献   

20.
The viral immediate-early protein 1 (IE1) is crucial for efficient replication of cytomegalovirus (CMV). A recent crystal structure of the IE1 protein from rhesus CMV revealed that the protein exhibits a novel fold and crystallizes in two slightly different dimeric arrangements. Molecular dynamics simulations and energetic analyses performed in this study show that both dimers are stable and allowed us to identify a common set of five residues that appear particularly important for dimer formation. These residues are distributed over the entire dimer interface and do not form a typical hot spot for protein interactions. In addition, the dimer interface of IE1 proved to include a high portion of hydrophilic interactions pointing toward the transient nature of dimer formation. Characterization of monomeric and dimeric IE1 revealed three sequentially discontinuous dynamic domains that exhibit correlated motion within the domain and are simultaneously anti-correlated to the adjacent domains. The hinge motions observed between the dynamic domains increase the shape complementarity to the coiled–coil region of tripartite motif proteins, suggesting that the detected dynamics of IE1 might be physiologically important by enabling a better interaction with its cellular target molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号