首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A full-length cDNA encoding a new cytochrome P450, CYP6L1, was cloned from German cockroaches, Blattella germanica. CYP6L1 has an open reading frame of 1509 nucleotides with a deduced protein of 503 amino acids and molecular mass of 57 Kd. CYP6L1 is most similar to CYP6H1, a putative ecdysone 20-hydroxylase from Locusta migratoria. CYP6L1 mRNA was not detected in embryos nor nymphs, nor in adult females. CYP6L1 mRNA was detected only in the testes and accessory glands of male adult German cockroaches. Given that the testes and accessory glands are the most important components of the reproductive system in male insects, the expression of CYP6L1 mRNA exclusively in these tissues strongly suggests that CYP6L1 has a role in reproduction. Possible substrates for CYP6L1 are discussed.  相似文献   

2.
Glucose is a universal phagostimulant in many animal species, including the cockroach Blattella germanica. However, some natural populations of B. germanica have been found that are behaviorally deterred from eating glucose. In dose-response studies, glucose was a powerful phagostimulant for wild-type cockroaches, but it strongly deterred feeding in a glucose-averse strain. Both strains, however, exhibited identical dose-response curves to other phagostimulants and deterrents. As a lead to electrophysiological and molecular genetics studies to investigate the mechanisms that underlie glucose-aversion, we used 2 assay paradigms to delineate which chemosensory appendages on the head contribute to the reception of various phagostimulatory and deterrent chemicals. Both simultaneous dual stimulation of the antenna and mouthparts of the insects and 2-choice preference tests in surgically manipulated insects showed that the glucose-averse behavior could be elicited through the gustatory systems of the antennae and mouthparts. The paraglossae alone were sufficient for maximum sensitivity to both phagostimulants and deterrents, including glucose as a deterrent in the glucose-averse strain. In addition to the paraglossae, the labial palps were more important than the maxillary palps in the reception of deterrents (caffeine in both strains and glucose in the glucose-averse strain). The maxillary palps, on the other hand, played a more important role in the reception of phagostimulants (fructose in both strains and glucose in the wild-type strain). Our results suggest that distinct inputs from the chemosensory system mediate opposite feeding responses to glucose in the wild-type and glucose-averse strains.  相似文献   

3.
Construction of chimeras and site directed mutagenesis were used to study the regioselectivity and kinetics of testosterone hydroxylation by the cytochrome P450s CYP2A1 and CYP2A2. Although these enzymes exhibit 88% sequence similarity, they catalyze very different regioselective hydroxylations of testosterone. Active chimeras inwhich the first 355 amino acids do not correspond to a single enzyme show broad radioselectivity, whereas the specificity of the parent enzyme is obtained if the first 355 amino acids are unchanged. Therefore, the region between amino acids 275 and 355 is important in maintaining regioselectivity. Single point mutants were constructed for the 13 amino acid differences in this region. For 26 single point and 2 double mutants all active mutants have the same regioselectivity as the parent enzymes. However, kinetic analysis of the CYP2A1 mutants showed that 4 single point mutants and 1 double mutant had kinetic parameters very different from the parent enzyme. All of these substitutions are associated with the conserved dioxygen binding region of the putative I helix predicted from the crystal structure of P450cam. Deuterium isotope effects were used to determine any changes in the rate of reduction and to estimate the relative amount of excess water formation. Changes in reduction rates are not sufficient to account for the differences in Vmax values. Therefore, it is likely that the amount of hydrogen peroxide formed is a primary determinant of Vmax.  相似文献   

4.
1. The inhibitory effects of tranylcypromine, a nonselective irreversible inhibitor of monoamine oxidase (MAO), on three cytochrome P450 (CYP) enzymes, namely CYP2C9, CYP2C19, and CYP2D6, have been evaluated in vitro. 2. The studies were conducted using cDNA-expressed human CYP enzymes and probe substrates. 3. A range of substrate concentrations was coincubated with a range of tranylcypromine concentrations in the presence of each of the CYP enzymes at 37 degrees C for a predetermined period of time. Product concentrations were quantified by HPLC with UV detection. 4. The results demonstrated that tranylcypromine is a competitive inhibitor of CYP2C19 (Ki = 32 microM) and CYP2D6 (Ki = 367 microM) and a noncompetitive inhibitor of CYP2C9 (Ki = 56 microM). 5. None of these inhibitory effects are considered clinically significant at usual therapeutic doses. However, in certain situations such as high dose tranylcypromine therapy, or in poor metabolizers of CYP2C19 substrates, clinically significant interactions might occur, particularly when tranylcypromine is coadministered with drugs with a narrow therapeutic index.  相似文献   

5.
6.
Drug metabolizing enzymes participate in the neutralizing of xenobiotics and biotransformation of drugs. Human cytochrome P450, particularly CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5, play an important role in drug metabolism. The genes encoding the CYP enzymes are polymorphic, and extensive data have shown that certain alleles confer reduced enzymatic function. The goal of this study was to determine the frequencies of important allelic variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 in the Jordanian population and compare them with the frequency in other ethnic groups. Genotyping of CYP1A1(m1 and m2), CYP2C9 (*2 and *3), CYP2C19 (*2 and *3), CYP3A4*5, CYP3A5 (*3 and *6), was carried out on Jordanian subjects. Different variants allele were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). CYP1A1 allele frequencies in 290 subjects were 0.764 for CYP1A1*1, 0.165 for CYP1A1*2A and 0.071 for CYP1A1*2C. CYP2C9 allele frequencies in 263 subjects were 0.797 for CYP2C9*1, 0.135 for CYP2C9*2 and 0.068 for CYP2C9*3. For CYP2C19, the frequencies of the wild type (CYP2C19*1) and the nonfunctional (*2 and *3) alleles were 0.877, 0.123 and 0, respectively. Five subjects (3.16?%) were homozygous for *2/*2. Regarding CYP3A4*1B, only 12 subjects out of 173 subjects (6.9?%) were heterozygote with none were mutant for this polymorphism. With respect to CYP3A5, 229 were analyzed, frequencies of CYP3A5*1,*3 and *6 were 0.071, 0.925 and 0.0022, respectively. Comparing our data with that obtained in several Caucasian, African-American and Asian populations, Jordanians are most similar to Caucasians with regard to allelic frequencies of the tested variants of CYP1A1, CYP2C9, CYP2C19, CYP3A4 and CYP3A5.  相似文献   

7.
To identify the structural features underlying the distinct substrate and inhibitor profiles of P450 2C19 relative to the closely related human enzymes, P450s 2C8 and 2C9, the atomic structure (Protein Data Bank code 4GQS) of cytochrome P450 2C19 complexed with the inhibitor (2-methyl-1-benzofuran-3-yl)-(4-hydroxy-3,5-dimethylphenyl)methanone (Protein Data Bank chemical component 0XV) was determined to 2.87 Å resolution by x-ray crystallography. The conformation of the peptide backbone of P450 2C19 is most similar to that of P450 2C8, but the substrate-binding cavity of P450 2C8 is much larger than that of P450 2C19 due to differences in the amino acid residues that form the substrate-binding cavities of the two enzymes. In contrast, the substrate-binding cavity of P450 2C19 is much more similar in size to that of the structure of the P450 2C9 flurbiprofen complex than to that of a modified P450 2C9 or that of P450 2C8. The cavities of the P450 2C19 0XV complex and the P450 2C9 flurbiprofen complex differ, however, because the helix B-C loops of the two enzymes are dissimilar. These conformational differences reflect the effects of adjacent structural elements that interact with the B-C loops and that differ between the two enzymes. The availability of a structure for 2C19 will facilitate computational approaches for predictions of substrate and inhibitor binding to this enzyme.  相似文献   

8.
信号失活是嗅觉动态过程的一个重要步骤, 这一过程涉及多样的气味降解酶类。本研究利用RT-PCR方法从家蚕Bombyx mori雄蛾的触角中克隆了一个细胞色素P450基因CYP6AE21。该基因含有一个1 572 bp的开放阅读框(open reading frame, ORF), 编码523个氨基酸, 预测分子量为60.5 kD, 等电点为8.4, 含有细胞色素P450的特征序列血红素结合位点区域。CYP6AE21和CYP6AE2基因一样在相同位置含有1个内含子序列, 且相应的2个外显子大小相同。两者的核苷酸序列相似性达到94.5%, 且在基因组上以头尾相连的方式成簇排列, 中间由约7.6 kb核苷酸序列隔开。CYP6AE21在幼虫的头部和脂肪体, 以及雄蛾和雌蛾的触角中表达量较高; 在幼虫的其他组织和蛾的多个组织中也有一定的表达。P450酶系的重要组分之一--NADPH细胞色素P450还原酶(cytochrome P450 reductase, CPR)基因也在雌蛾和雄蛾触角中高水平表达, 而在其他组织中表达量相对较低。亚细胞定位分析表明CYP6AE21表达产物定位于细胞质中。推测CYP6AE21和CYP6AE2是由其中一个基因加倍复制形成的; 此P450的功能之一可能是参与内化进细胞的气味分子的降解清除。  相似文献   

9.
The cytochrome P450 (CYP) 4 family of enzymes contains several recently identified membersthat are referred to as “orphan P450s” because their endogenous substrates are unknown.Human CYP4V2 and CYP4F22 are two such orphan P450s that are strongly linked to ocular andskin disease, respectively. Genetic analyses have identified a wide spectrum of mutations in the CYP4V2gene from patients suffering from Bietti’s crystalline corneoretinal dystrophy, and mutations in theCYP4F22 gene have been linked to lamellar ichthyosis. The strong gene–disease associations provideunique opportunities for elucidating the substrate specificity of these orphan P450s and unraveling thebiochemical pathways that may be impacted in patients with CYP4V2 and CYP4F22 functional deficits.  相似文献   

10.
Affecting hepatic cytochrome (CYP) activity is one of the major concerns in drug–drug interaction. Thus the testing of drug candidates on their impact on these enzymes is an essential step in early drug discovery. We tested a collection of 480 in-house phthalimide derivatives against different CYP450s using a high throughput inhibition assay. In initial tests with the isoform CYP2C19 about 57.5% of the tested phthalimide derivatives showed significantly enhanced inhibitory effects against this enzyme. In addition similar patterns of phthalimide inhibition for CYP2C9 and CYP2C19 were found, whereas the unrelated isoforms CYP2D6 and CYP3A4 were not specifically affected. Also less than 10% of randomly chosen substances inhibited CYP2C9. Analyses of structure-function relationships revealed that the substituent at the nitrogen atom in the isoindole ring is of crucial impact for the activity of CYP2C9/19.  相似文献   

11.
Fluoxetine (FLX) is one of the most widely prescribed selective serotonin reuptake inhibitors. Although FLX is used as racemate in the clinic, the clinical pharmacokinetics of FLX and its N‐demethylation metabolite norfluoxetine (NFLX) show obvious cytochrome P450 (CYP) polymorphism dependency and exhibit marked stereoselectivity. However, the kinetic profiles of CYP variants to FLX remain unclear. In the present study, some variants of human CYP2C8, CYP2C9, and CYP2D6 were first expressed in insect cells, and their catalytic roles with respect to FLX enantiomers were then investigated. CYP2C8.4 and CYP2C9.10 showed significantly lower activity and CYP2C8.3 showed significantly higher activity toward both R‐ and S‐FLX compared with the wildtype, while CYP2C9.3, CYP2C9.13, and CYP2C9.16 showed significantly lower activity only toward R‐FLX. Five CYP2C9 variants and CYP2D6.1 exhibited significantly stereoselective kinetic profiles prior to R‐FLX, and CYP2C8.3 showed a slight stereoselectivity. Interestingly, obvious substrate inhibition was observed in the CYP2C9 wildtype and its three variants only in the case of R‐FLX. Together, these findings suggest that CYP2C9 and CYP2D6 polymorphism may play an important role in the clearance of FLX and also in the stereoselective kinetic profiles of FLX enantiomers. Chirality 26:166–173, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The cytochrome P450 2C (CYP2C) gene locus was found to includea novel exon 1 sequence with high similarity to the canonicalexon 1 of CYP2C18. Rapid amplification of cDNA ends (RACE) andPCR amplifications of human liver cDNA revealed the presenceof several intergenic species containing the CYP2C18 exon 1–likesequence spliced to different combinations of exonic and intronicsequences from the CYP2C9 gene. One splice variant was foundto have an open reading frame starting at the canonical translationinitiation codon of the CYP2C18 exon 1–like sequence.Another variant consisted of the nine typical CYP2C9 exons splicedafter the CYP2C18 exon 1–like sequence through a segmentof CYP2C9 5' flanking sequences. Moreover, analysis of bacterialartificial chromosome (BAC) clones revealed that the CYP2C18exon 1–like sequence was located in the intergenic regionbetween the CYP2C19 and CYP2C9 genes. The finding that a solitaryexon is spliced with sequences from a neighboring gene may beinterpreted as representing a general evolutionary mechanismaimed at using the full expression potential of a cell's genomicinformational content.  相似文献   

13.
14.
目的:采用cocktail探针药物法研究傣药"雅解沙把"对肝细胞色素P450亚型CYP1A2、CYP2C19、CYP2E1、CYP3A4的影响。方法:将SD大鼠随机分为空白对照组、苯巴比妥钠组(10.8 mg/kg)、"雅解沙把"低剂量组(0.27 g生药/kg)和"雅解沙把"高剂量组(2.43 g生药/kg),按上述剂量灌胃给药,空白对照组灌胃蒸馏水。连续灌胃7天后处死动物,取肝脏制备肝微粒体,以甲硝唑为内标,建立HPLC方法检测Cocktail探针药物奥美拉唑、氯唑沙宗、咖啡因、氨苯砜的代谢情况。结果:与空白对照组比较,"雅解沙把"低剂量组和高剂量组氯唑沙宗的代谢明显升高,氯唑沙宗的含量显著降低(P0.01),"雅解沙把"高剂量组奥美拉唑和氨苯砜的代谢明显升高,奥美拉唑和氨苯砜的含量明显降低(P0.05)。"雅解沙把"低剂量组和高剂量组虽咖啡因代谢较与空白对照组有上升的趋势,但差异无统计学意义(P0.05)。结论:傣药"雅解沙把"能促进肝药酶CYP3A4、CYP2C19、CYP2E1的活性,加速药物代谢,这可能是其解药物毒的作用机制之一。  相似文献   

15.
The rat CYP8B cDNA encoding sterol 12alpha-hydroxylase was cloned and sequenced. The amino acid sequence of the heme-binding region of CYP8B was close to those of CYP7A (cholesterol 7alpha-hydroxylase) and CYP7B (oxysterol 7alpha-hydroxylase). Molecular phylogenetic analysis suggests that CYP8B and the CYP7 family derive from a common ancestor. The P450s of the CYP7 and CYP8 families, except for CYP8A (prostacyclin synthase), catalyze the oxygenation of sterols from an alpha surface in the middle of the steroid skeleton. These facts suggest that CYP8B is a P450 closely linked to those of the CYP7 family. CYP8B was expressed specifically in liver. Hepatic CYP8B mRNA level and the 12alpha-hydroxylase activity were altered by cholestyramine feeding, starvation, streptozotocin-induced diabetes mellitus, and administration of clofibrate, dexamethasone or thyroxin, indicating the pretranslational regulation of CYP8B expression. The enhanced CYP8B mRNA expression in streptozotocin-induced diabetic rats was significantly decreased by insulin within 3 h of its administration. These facts demonstrate a regulatory role of insulin in CYP8B expression as a suppressor.  相似文献   

16.
Gonzalez FJ 《Mutation research》2005,569(1-2):101-110
Cytochromes P450 are responsible for metabolism of most xenobiotics and are required for the efficient elimination of foreign chemicals from the body. Paradoxically, these enzymes also metabolically activate biologically inert compounds to electrophilic derivatives that can cause toxicity, cell death and sometimes cellular transformation resulting in cancer. To establish the role of these enzymes in toxicity and carcinogenicity in vivo, gene knockout mice have been developed. To illustrate the role of P450s in toxicity, CYP2E1-null mice were employed with the commonly used analgesic drug acetaminophen. CYP2E1 is the rate-limiting enzyme that initiates the cascade of events leading to acetaminophen hepatotoxicity; in the absence of this P450, toxicity will only be apparent at high concentrations. Other enzymes and nuclear receptors are also involved in activation or inactivating chemicals. CYP2E1 is induced by alcohol and the primary P450 that carries out ethanol oxidation that can lead to the production of activated oxygen species and oxidative stress that elevate ERK1/2 phosphorylation through EGRF/c-Raf signaling. Paradoxically, activation of this pathway inhibits apoptotic cell death stimulated by reactive oxygen generating chemicals but accelerates necrotic cell death produced by polyunsaturated fatty acids. CYP2E1 is thought to contribute to liver pathologies that result from alcoholic liver disease and non-alcoholic steatohepatitis.  相似文献   

17.
18.
Three human cytochrome P450s, 3A4, 2C9 and 1A2, were each co-expressed with NADPH-P450 reductase in Escherichia coli and used in the preparative synthesis of drug metabolites. Low dissolved oxygen (DO) concentration (<1%) during expression was found to be critical for producing active P450s. Control of temperature, pH and glycerol supplementation in 10-L fermentations enhanced enzyme expression 31–86%. Additional improvements were obtained by altering media formulations, resulting in bicistronic expression levels of 890, 1,800 and 1,010 nmol/L for 3A4, 2C9 and 1A2, respectively. The P450 titers achieved in fermentors exceeded those in flask fermentations by 3- to 6-fold in this study and up to 10-fold when compared with previously reported literature [FEBS Lett (1996) 397:210–214, Arch Biochem Biophys (1996) 327:254–259, Biochem Pharmacol (1998) 55:1315–1325, Drug Metab Pharmacokinet (2003) 18:42–47, Nat Biotechnol (1997) 15:784–788; Metab Eng (2000) 2:115–125]. Intact cells and isolated membranes obtained from 10-L fermentations were used to establish an efficient bioconversion system for the generation of metabolites. To demonstrate the utility of this approach, known metabolites of the anabolic steroid testosterone, the anti-inflammatory agent diclofenac and the analgesic agent phenacetin, were generated using 3A4, 2C9 and 1A2, respectively. The reaction conditions were optimized for pH, temperature, DO concentration, use of co-solvent and glucose supplementation. Conversion yields of 29–93% were obtained from 1-L reactions, enabling isolation of 59 mg 6-hydroxytestosterone, 110 mg 4-hydroxydiclofenac and 88 mg acetaminophen.  相似文献   

19.
《Journal of Asia》2021,24(3):805-813
Chemical pesticides often applied to effectively control the long-horned beetles to protect the forests are reported to affect the non-target organisms adversely. Dastarcus helophoroides is an active natural enemy of long-horned beetles. Studying the molecular mechanism of P450 genes will help to elucidate the metabolic mechanism of pesticides in D. helophoroides to better coordinate the use of chemical and biological controls. In this study, two novel genes, CYP6BQ21, and CYP6BQ22 were successfully cloned from D. helophoroides using the rapid amplification of cDNA ends technique. The sequence and homology analyses indicated that CYP6BQ21 was highly similar to CYP6BQ1 from Tribolium castaneum, while CYP6BQ22 was closely related to CYP6BQ13 from T. castaneum. Gene expression patterns showed that CYP6BQ21 and CYP6BQ22 were specifically expressed in the adult stage of D. helophoroides. In addition, CYP6BQ21 and CYP6BQ22 were significantly expressed under the treatment of a high concentration of cypermethrin. Based on these findings, we proposed that CYP6BQ21 and CYP6BQ22 played possible roles in the development and pesticide stress of D. helophoroides. Our findings are an important first step in identifying and characterizing CYP6BQ21 and CYP6BQ22 from D. helophoroides, and lay the groundwork for future research into the role of these novel CYP6s in the regulation of pesticide resistance in D. helophoroides.  相似文献   

20.
孙海霞  陈俊  杨之帆 《昆虫学报》2014,57(6):656-662
【目的】细胞色素P450单加氧酶在昆虫生长发育和适应环境过程中发挥着重要功能。【方法】本研究克隆了褐飞虱Nilaparvata lugens细胞色素P450基因CYP4C62的开放阅读框(不含信号肽编码序列部分),在大肠杆菌Escherichia coli中实现了高效表达,经Ni-NTA琼脂糖凝胶亲和层析柱纯化得到了重组的CYP4C62蛋白。将该蛋白免疫日本大耳白兔Oryctolagus cuniculus雄兔,制备了兔抗CYP4C62血清抗体。采用间接ELISA方法检测了血清抗体的效价;并通过Western印迹杂交检测了该抗体的免疫学特异性。【结果】结果表明,通过大肠杆菌表达出的CYP4C62蛋白相对分子量为56 kD。间接ELISA法检测表明,制备的兔抗CYP4C62抗体的效价达到1∶100 000。Western印迹杂交证实,该抗体既可与异源表达的CYP4C62蛋白特异性结合,也可以与褐飞虱总蛋白中内源的CYP4C62特异性结合,表明具有较好的免疫反应特异性。【结论】CYP4C62多克隆抗体的成功制备,为后续分析CYP4C62在褐飞虱各组织中的时空表达水平,并通过免疫组织化学法定位分析该蛋白的组织、细胞及亚细胞分布规律,及最终解析CYP4C62的生物学功能奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号