首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Patterns of sex chromosome and autosome evolution can be used to elucidate the underlying genetic basis of adaptative change. Evolutionary theory predicts that X-linked genes will adapt more rapidly than autosomes if adaptation is limited by the availability of beneficial mutations and if such mutations are recessive. In Drosophila, rates of molecular divergence between species appear to be equivalent between autosomes and the X chromosome. However, molecular divergence contrasts are difficult to interpret because they reflect a composite of adaptive and nonadaptive substitutions between species. Predictions based on faster-X theory also assume that selection is equally effective on the X and autosomes; this might not be true because the effective population sizes of X-linked and autosomal genes systematically differ. Here, population genetic and divergence data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba are used to estimate the proportion of adaptive amino acid substitutions occurring in the D. melanogaster lineage. After gene composition and effective population size differences between chromosomes are controlled, X-linked and autosomal genes are shown to have equivalent rates of adaptive divergence with approximately 30% of amino acid substitutions driven by positive selection. The results suggest that adaptation is either unconstrained by a lack of beneficial genetic variation or that beneficial mutations are not recessive and are thus highly visible to natural selection whether on sex chromosomes or on autosomes.  相似文献   

3.
4.
I present data on the evolution of intron lengths among 3 closely related Drosophila species, D. melanogaster, Drosophila simulans, and Drosophila yakuba. Using D. yakuba as an outgroup, I mapped insertion and deletion mutations in 148 introns (spanning approximately 30 kb) to the D. melanogaster and D. simulans lineages. Intron length evolution in the 2 sister species has been different: in D. melanogaster, X-linked introns have increased slightly in size, whereas autosomal ones have decreased slightly in size; in D. simulans, both X-linked and autosomal introns have decreased in size. To understand the possible evolutionary causes of these lineage- and chromosome-specific patterns of intron evolution, I studied insertion-deletion (indel) polymorphism and divergence in D. melanogaster. Small insertion mutations segregate at elevated frequencies and enjoy elevated probabilities of fixation, particularly on the X chromosome. In contrast, there is no detectable X chromosome effect on fixations in D. simulans. These findings suggest X chromosome-specific selection or biased gene conversion-gap repair favoring insertions in D. melanogaster but not in D. simulans. These chromosome- and lineage-specific patterns of indel substitution are not easily explained by existing general population genetic models of intron length evolution. Genomic data from D. melanogaster further suggest that the forces described here affect introns and intergenic regions similarly.  相似文献   

5.
X Chromosome Inactivation during Drosophila Spermatogenesis   总被引:1,自引:1,他引:0  
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

6.
7.
Genes with male- and testis-enriched expression are under-represented on the Drosophila melanogaster X chromosome. There is also an excess of retrotransposed genes, many of which are expressed in testis, that have “escaped” the X chromosome and moved to the autosomes. It has been proposed that inactivation of the X chromosome during spermatogenesis contributes to these patterns: genes with a beneficial function late in spermatogenesis should be selectively favored to be autosomal in order to avoid inactivation. However, conclusive evidence for X inactivation in the male germline has been lacking. To test for such inactivation, we used a transgenic construct in which expression of a lacZ reporter gene was driven by the promoter sequence of the autosomal, testis-specific ocnus gene. Autosomal insertions of this transgene showed the expected pattern of male- and testis-specific expression. X-linked insertions, in contrast, showed only very low levels of reporter gene expression. Thus, we find that X linkage inhibits the activity of a testis-specific promoter. We obtained the same result using a vector in which the transgene was flanked by chromosomal insulator sequences. These results are consistent with global inactivation of the X chromosome in the male germline and support a selective explanation for X chromosome avoidance of genes with beneficial effects late in spermatogenesis.  相似文献   

8.
Contrasting the efficacy of selection on the X and autosomes in Drosophila   总被引:1,自引:0,他引:1  
To investigate the relative efficacy of both positive and purifying natural selection on the X chromosome and the autosomes in Drosophila, we compared rates and patterns of molecular evolution between these chromosome sets using the newly available alignments of orthologous genes from 12 species. Parameters that may influence the relative X versus autosomal substitution rates include the relative effective population sizes, the male and female germline mutation rates, the distribution of allelic effects on fitness, and the degree of dominance of novel mutations. Our analysis reveals that codon usage bias is consistently greater for X-linked genes, suggesting that purifying selection consistently has greater efficacy on the X chromosome than on the autosomes across the Drosophila phylogeny. However, our results are less consistent with respect to the efficacy of positive selection, with only some lineages showing a higher substitution rate on the X chromosome. This suggests that either the distribution of selective effects of mutations or other relevant parameters are sufficiently variable across species to tip the balance in different ways in individual lineages. These data suggest that rates of substitution are not solely governed by adaptive evolution. This genome-wide analysis provides a clear picture that the efficacy of selection varies intragenomically and that this effect is markedly more consistent across the phylogeny in the case of purifying selection. Our results also suggest that simple models that predict systematic differences in rates of evolution between the X and the autosomes can only be made to be compatible with these Drosophila data if the relevant population genetic parameters that drive substitution rates differ among species and chromosomal contexts.  相似文献   

9.
Wakimoto BT  Lindsley DL  Herrera C 《Genetics》2004,167(1):207-216
Drosophila melanogaster is a widely used model organism for genetic dissection of developmental processes. To exploit its full potential for studying the genetic basis of male fertility, we performed a large-scale screen for male-sterile (ms) mutations. From a collection of 12,326 strains carrying ethyl-methanesulfonate-treated, homozygous viable second or third chromosomes, 2216 ms lines were identified, constituting the largest collection of ms mutations described to date for any organism. Over 2000 lines were cytologically characterized and, of these, 81% failed during spermatogenesis while 19% manifested postspermatogenic processes. Of the phenotypic categories used to classify the mutants, the largest groups were those that showed visible defects in meiotic chromosome segregation or cytokinesis and those that failed in sperm individualization. We also identified 62 fertile or subfertile lines that showed high levels of chromosome loss due to abnormal mitotic or meiotic chromosome transmission in the male germ line or due to paternal chromosome loss in the early embryo. We argue that the majority of autosomal genes that function in male fertility in Drosophila are represented by one or more alleles in the ms collection. Given the conservation of molecular mechanisms underlying important cellular processes, analysis of these mutations should provide insight into the genetic networks that control male fertility in Drosophila and other organisms, including humans.  相似文献   

10.
The Genetics of Postzygotic Isolation in the Drosophila Virilis Group   总被引:8,自引:7,他引:1  
H. A. Orr  J. A. Coyne 《Genetics》1989,121(3):527-537
In a genetic study of postzygotic reproductive isolation among species of the Drosophila virilis group, we find that the X chromosome has the largest effect on male and female hybrid sterility and inviability. The X alone has a discernible effect on postzygotic isolation between closely related species. Hybridizations involving more distantly related species also show large X-effects, although the autosomes may also play a role. In the only hybridization yet subjected to such analysis, we show that hybrid male and female sterility result from the action of different X-linked loci. Our results accord with genetic studies of other taxa, and support the view that both Haldane's rule (heterogametic F1 sterility or inviability) and the large effect of the X chromosome on reproductive isolation result from the accumulation by natural selection of partially recessive or underdominant mutations. We also describe a method that allows genetic analysis of reproductive isolation between species that produce completely sterile or inviable hybrids. Such species pairs, which represent the final stage of speciation, cannot be analyzed by traditional methods. The X chromosome also plays an important role in postzygotic isolation between these species.  相似文献   

11.
Singh ND  Davis JC  Petrov DA 《Genetics》2005,171(1):145-155
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes in both Drosophila and Caenorhabditis. Furthermore, genes that become X-linked evolve higher codon bias gradually, over tens of millions of years. We provide several lines of evidence that this elevation in codon bias is due exclusively to their chromosomal location and not to any other property of X-linked genes. We present two possible explanations for these observations. One possibility is that natural selection is more efficient on the X chromosome due to effective haploidy of the X chromosomes in males and persistently low effective numbers of reproducing males compared to that of females. Alternatively, X-linked genes might experience stronger natural selection for higher codon bias as a result of maladaptive reduction of their dosage engendered by the loss of the Y-linked homologs.  相似文献   

12.
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using genes with different levels of sex-biased expression and by estimating the extent of adaptive evolution of non-synonymous mutations from polymorphism and divergence data. We detected both a Faster-X effect and an effect of male-biased gene expression. There was no evidence for a strong association between the two effects—modest levels of male-biased gene expression increased the rate of adaptive evolution on both the autosomes and the X chromosome, but a Faster-X effect occurred for both unbiased genes and female-biased genes. The rate of genetic recombination did not influence the magnitude of the Faster-X effect, ruling out the possibility that it reflects less Hill–Robertson interference for X-linked genes.  相似文献   

13.
Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule—the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect—substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60%) whereas few autosomal introgressions do (18%). Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility.  相似文献   

14.
We have surveyed the region of the X chromosome of Drosophila melanogaster which encodes the yellow, achaete and scute genes for restriction map variation. Two natural populations, one from North Carolina, U.S.A. and the other from southern Spain were screened for variation at about 70 restriction sites and for variation due to DNA insertion or deletion events in 120 kilobases of DNA. Mean heterozygosity per nucleotide was estimated to be 0.0024 and 15 large insertions were found in the 49 chromosomes screened. Extensive disequilibrium between polymorphic sites were found across much of the region in the North Carolina population. The frequency of large insertions, which usually correspond to transposable genetic elements, is significantly lower than has been observed in autosomal regions of the genome. This is predicted for X-linked loci by certain models of transposable element evolution, where copy number is restricted by virtue of the recessive deleterious effects of the insertions. Our results appear to support such models. The deficiency of insertions may in this case be enhanced by hitch-hiking effects arising from the high level of disequilibrium.  相似文献   

15.
Oh SW  Kingsley T  Shin HH  Zheng Z  Chen HW  Chen X  Wang H  Ruan P  Moody M  Hou SX 《Genetics》2003,163(1):195-201
With the completion of the nucleotide sequences of several complex eukaryotic genomes, tens of thousands of genes have been predicted. However, this information has to be correlated with the functions of those genes to enhance our understanding of biology and to improve human health care. The Drosophila transposon P-element-induced mutations are very useful for directly connecting gene products to their biological function. We designed an efficient transposon P-element-mediated gene disruption procedure and performed genetic screening for single P-element insertion mutations, enabling us to recover 2500 lethal mutations. Among these, 2355 are second chromosome mutations. Sequences flanking >2300 insertions that identify 850 different genes or ESTs (783 genes on the second chromosome and 67 genes on the third chromosome) have been determined. Among these, 455 correspond to genes for which no lethal mutation has yet been reported. The Drosophila genome is thought to contain approximately 3600 vital genes; 1400 are localized on the second chromosome. Our mutation collection represents approximately 56% of the second chromosome vital genes and approximately 24% of the total vital Drosophila genes.  相似文献   

16.
17.
This paper describes genetic mapping studies with several respiration-deficient mutants of Chinese hamster fibroblasts which have a defect in complex I of the electron transport chain (NADH-coenzyme Q reductase). The mutations associated with two different complementation groups map on the X chromosome. In two cases (G14 and G20) karyotypic and isozyme analyses in hybrids have shown that a gene(s) on the mouse X chromosome complements the mutation(s) in the hamster cell mutant(s). A cosegregation analysis in hybrid cells has shown the corresponding genes to be linked to the HPRT genes (hamster-mouse hybrids of G14, and hamster-hamster hybrids for G14 and G20). By the same method the defective gene in a third mutant (G4) was also shown to be X-linked. A mutation representing a third complementation group (G11) was shown to be on an autosomal gene. These results provide an explanation for our observation that cells with recessive mutations in complementation groups I and II can be selected at relatively high frequencies.  相似文献   

18.
Restriction-map variation in 64 X chromosome lines extracted from three different natural populations of Drosophila melanogaster was investigated with seven six-nucleotide-recognizing enzymes for a 20-kb region including the zeste and tko genes. Ten restriction-site and four length polymorphisms (two insertions and two deletions) were detected. Contrary to the predicted lower level of variation for genes on the X chromosome, the level of variation attributable to nucleotide substitution (estimated heterozygosity/nucleotide = 0.004) was similar to that previously reported for autosomal loci. The amount of insertion/deletion variation in the studied region was within the range observed in autosomal regions and thus not explainable by a simple selection model against the effects of insertional mutations. A general lack of linkage disequilibrium between polymorphic sites was observed.   相似文献   

19.
Natural selection is assumed to act more strongly on X-linked loci than on autosomal loci because the fitness effect of a recessive mutation on the X chromosome is fully expressed in hemizygous males. Therefore, selection is expected to fix or remove recessive mutations on the X chromosome more efficiently than those on autosomes. However, the assumption that hemizygosity of the X chromosome selectively accelerates changes in allele frequency has not been confirmed directly. To examine this assumption, we investigated current natural selection on X-linked chemoreceptor genes in a natural population of Drosophila melanogaster by comparing nucleotide diversity, linkage disequilibrium (LD), and departure from the neutrality in 4 chemoreceptor genes on 100 X chromosomes each from female and male flies. The general pattern of nucleotide diversity and LD for the genes investigated was similar in females and males. In contrast, males harbored significantly fewer rare polymorphisms defined as singletons and doubletons. When all the gene sequences were concatenated, Tajima's D showed a significant departure from the neutrality in both females and males, whereas Fu and Li's F* value revealed departure only in males. These results suggest that some rare polymorphisms on the X chromosome from females are recessively deleterious and are removed by stronger purifying selection when transferred to hemizygous males.  相似文献   

20.
H. A. Orr 《Genetics》1989,122(4):891-894
The X chromosome invariably has the largest effect on postzygotic isolation between animal species. One explanation of this pattern is that inviability and sterility result from a breakdown in the dosage compensation of X-linked genes in hybrids. In Drosophila, such breakdown could result from divergence of the genes used to assess the X/autosomal (X/A) ratio, and thus the sex, of an individual. I test this hypothesis by introducing mutant alleles of the Sex-lethal locus into Drosophila melanogaster-Drosophila simulans hybrids. These mutants "ignore" any perceived anomalous X/A ratio and thus can be used to ensure proper dosage compensation in hybrids. These mutants do not rescue hybrid viability or fertility, implying that postzygotic isolation in this hybridization does not result from a disruption of dosage compensation caused by divergence of the X/A counting system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号