首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
The coumarin antibiotics are potent inhibitors of DNA replication whose target is the enzyme DNA gyrase, an ATP-dependent bacterial type II topoisomerase. The coumarin drugs inhibit gyrase action by competitive binding to the ATP-binding site of DNA gyrase B protein. The production of new biologically active products has stimulated additional studies on coumarin-gyrase interactions. In this regard, a 4.2 kDa peptide mimic of DNA gyrase B protein from Escherichia coli has been designed and synthesized. The peptide sequence includes the natural fragment 131-146 (coumarin resistance-determining region) and a segment containing the gyrase-DNA interaction region (positions 753-770). The peptide mimic binds to novobiocin (Ka = 1.4+/-0.3 x 10(5) M(-1)), plasmid (Ka = 1.6+/-0.5 x 10(6) M(-1)) and ATP (Ka = 1.9+/-50.4 x 10(3) M(-1)), results previously found with the intact B protein. On the other hand, the binding to novobiocin was reduced when a mutation of Arg-136 to Leu-136 was introduced, a change previously found in the DNA gyrase B protein from several coumarin-resistant clinical isolates of Escherichia coli In contrast, the binding to plasmid and to ATP was not altered. These results suggest that synthetic peptides designed in a similar way to that described here could be used as mimics of DNA gyrase in studies which seek a better understanding of the ATP, as well as coumarin, binding to the gyrase and also the mechanism of action of this class of antibacterial drugs.  相似文献   

2.
ABSTRACT

The inhibitory effect of WQ-3810 on DNA gyrase was assayed to evaluate the potential of WQ-3810 as a candidate drug for the treatment of quinolone resistant Salmonella Typhymurium infection. The inhibitory effect of WQ-3810, ciprofloxacin and nalidixic acid was compared by accessing the drug concentration that halves the enzyme activity (IC50) of purified S. Typhimurium wildtype and mutant DNA gyrase with amino acid substitution at position 83 or/and 87 in subunit A (GyrA) causing quinolone resistance. As a result, WQ-3810 reduced the enzyme activity of both wildtype and mutant DNA gyrase at a lower concentration than ciprofloxacin and nalidixic acid. Remarkably, WQ-3810 showed a higher inhibitory effect on DNA gyrase with amino acid substitutions at position 87 than with that at position 83 in GyrA. This study revealed that WQ-3810 could be an effective therapeutic agent, especially against quinolone resistant Salmonella enterica having amino acid substitution at position 87.  相似文献   

3.
The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones.  相似文献   

4.
The 2.7 A crystal structure of the 55-kDa N-terminal breakage-reunion domain of topoisomerase (topo) IV subunit A (ParC) from Streptococcus pneumoniae, the first for the quinolone targets from a gram-positive bacterium, has been solved and reveals a 'closed' dimer similar in fold to Escherichia coli DNA gyrase subunit A (GyrA), but distinct from the 'open' gate structure of Escherichia coli ParC. Unlike GyrA whose DNA binding groove is largely positively charged, the DNA binding site of ParC exhibits a distinct pattern of alternating positively and negatively charged regions coincident with the predicted positions of the grooves and phosphate backbone of DNA. Based on the ParC structure, a new induced-fit model for sequence-specific recognition of the gate (G) segment by ParC has been proposed. These features may account for the unique DNA recognition and quinolone targeting properties of pneumococcal type II topoisomerases compared to their gram-negative counterparts.  相似文献   

5.
Mapping the active site tyrosine of Escherichia coli DNA gyrase   总被引:40,自引:0,他引:40  
We have identified tyrosine 122 of the A subunit of Escherichia coli DNA gyrase as the tyrosine that becomes covalently bound to DNA when the enzyme breaks the phosphodiester bonds of DNA. The covalent gyrase X DNA complex was isolated following cleavage of the DNA by gyrase in the presence of the gyrase inhibitor oxolinic acid. The active site tyrosine was first mapped to two overlapping peptides. Its precise position in the sequence of the A subunit of gyrase was then determined by sequencing of a peptide bound to DNA. We also present a method for mapping sites of DNA attachment in a protein of known amino acid sequence. The covalent complex of DNA and protein is treated with proteases that cut specifically. The electrophoretic mobilities of the resulting peptide-bound DNA molecules are correlated with the sizes of the bound peptides, allowing determination of the site of attachment of the DNA.  相似文献   

6.
Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K(a) = 1.8 +/- 0.2 x 10(5)/m) and ATP (K(a) = 1.9 +/- 0.4 x 10(3)/m). To build the other sequences, changes in the Arg(136) residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (K(a) = 1.3 +/- 0.1 x 10(5)/m and 1.0 +/- 0.2 x 10(5)/m for Ser and His, respectively). No binding was observed for the change Arg(136) to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg(2+) appears to modulate the binding process. Our results demonstrate the crucial role of Arg(136) residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions.  相似文献   

7.
The conformational equilibria of the A subunit of DNA gyrase (GyrA), of its 59 kDa N-terminal fragment (GyrA59) and of the quinolone-resistant Ser-Trp83 mutant (GyrATrp83), were investigated in the presence of mono- and divalent metal ions and ciprofloxacin, a clinically useful antibacterial quinolone. The stability of the proteins was estimated from temperature denaturation, monitoring unfolding with circular dichroism spectroscopy. Two transitions were observed in GyrA and GyrATrp83, which likely reflect unfolding of the N and C-terminal protein domains. Accordingly, one thermal transition is observed for GyrA59.The melting profile of the GyrA subunit is dramatically affected by monovalent and divalent metal ions, both transitions being shifted to lower temperature upon increasing salt concentration. This effect is much more pronounced with divalent ions (Mg(2+)) and cannot be accounted for by changes in ionic strength only. The presence of ciprofloxacin shifts the melting transitions of the wild-type subunit to higher temperatures when physiological concentrations of Mg(2+) are present. In contrast, both the mutant protein and the 59 kDa fragment do not show evidence for quinolone-driven changes. These data suggest that ciprofloxacin binds to the wild-type subunit in an interaction that involves Ser83 of GyrA and that both C and N-terminal domains may be required for effective drug-protein interactions. The bell-shaped dependence of the binding process upon Mg(2+) concentration, with a maximum centred at 3-4 mM [Mg(2+)], is consistent with a metal-ion mediated GyrA-quinolone-interaction. Affinity chromatography data fully support these findings and additionally confirm the requirement for a free carboxylate to elicit binding of the quinolone to GyrA.We infer that the Mg(2+)-GyrA interaction at physiological metal ion concentration could bear biological relevance, conferring more conformational flexibility to the active enzyme. The results obtained in the presence of ciprofloxacin additionally suggest that the Mg(2+)-mediated quinolone binding to the enzyme might be involved in the mechanism of action of this family of drugs.  相似文献   

8.
The gyrA genes isolated from three ciprofloxacin-resistant clinical isolates of Staphylococcus aureus carried codon 84 (serine----leucine) and/or codon 85 (serine----proline) mutations that were absent in pretreatment susceptible strains. These substitutions occur in a region of the gyrase A protein wherein directly analogous mutations of serine 83----leucine and alanine 84----proline in Escherichia coli confer quinolone resistance. Thus, DNA gyrase A subunit mutations are implicated in resistance to ciprofloxacin in S. aureus.  相似文献   

9.
Quinolone-resistant Salmonella enterica usually contain a mutation in gyrA within the region encoding the quinolone resistance determining region of the A subunit of DNA gyrase. These mutations confer substitutions analogous to Escherichia coli Ser83-->Phe and Asp87-->Gly or Tyr, or a novel mutation resulting in Ala119-->Glu or Val. Mutations in gyrB are rare, and no mutations in parC or parE have been described. Quinolone-resistant Salmonella can also be cross-resistant to other agents including chloramphenicol and tetracycline. Increased efflux has been demonstrated and for some strains this has been associated with increased expression of acrB. Mutation in soxR has also been shown for one isolate. Detection of low level resistance (minimum inhibitory concentrations <0.5 microg ml(-1)) to fluoroquinolones is proving an increasing problem in the treatment of invasive Salmonella infections.  相似文献   

10.
DNA gyrase is an essential type II topoisomerase found in bacteria. We have previously characterized DNA gyrase from Mycobacterium tuberculosis and Mycobacterium smegmatis. In this study, several monoclonal antibodies were generated against the gyrase A subunit (GyrA) of M. smegmatis. Three, MsGyrA:C3, MsGyrA:H11 and MsGyrA:E9, were further analyzed for their interaction with the enzyme. The monoclonal antibodies showed high degree of cross-reactivity with both fast-growing and slow-growing mycobacteria. In contrast, none recognized Escherichia coli GyrA. All the three monoclonal antibodies were of IgG1 isotype falling into two distinct types with respect to epitope recognition and interaction with the enzyme. MsGyrA:C3 and MsGyrA:H11 IgG, and their respective Fab fragments, inhibited the DNA supercoiling activity catalyzed by mycobacterial DNA gyrase. The epitope for the neutralizing monoclonal antibodies appeared to involve the region towards the N-terminus (residues 351-415) of the enzyme in a conformation-dependent manner. These monoclonal antibodies would serve as valuable tools for structure-function analysis and immunocytological studies of mycobacterial DNA gyrase. In addition, they would be useful for designing peptide inhibitors against DNA gyrase.  相似文献   

11.
Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule. This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its binding to DNA.  相似文献   

12.
Pentapeptide repeats are a class of proteins characterized by the presence of multiple repeating sequences five amino acids in length. The sequences fold into a right-handed β-helix with a roughly square-shaped cross section. Pentapeptide repeat proteins include a number of examples which are thought to function as structural mimics of DNA and act to competitively bind to the type II topoisomerase DNA gyrase, an important antibacterial target. DNA gyrase-targeting pentapeptide repeat proteins can both inhibit DNA gyrase—a potentially useful therapeutic property—and contribute to resistance to quinolone antibacterials (by acting to prevent them forming a lethal complex with the DNA and enzyme). Pentapeptide repeat proteins are therefore of wide interest not only because of their unusual structure, function, and potential as an antibacterial target, but also because knowledge of their mechanism of action may lead to both a greater understanding of the details of DNA gyrase function as well as being a useful template for the design of new DNA gyrase inhibitors. However, many puzzling aspects as to how these DNA mimics function and indeed even their ability to act as DNA mimics itself remains open to question. This review summarizes the current state of knowledge regarding pentapeptide repeat proteins, focusing on those that are thought to mimic DNA, and speculates on potential structure-function relationships which may account for their differing specificities.  相似文献   

13.
As a means of gaining additional information on the topoisomerase-mediated cytotoxicity induced by a variety of antibacterial and antitumor compounds we have examined the interaction of the quinolone anti-bacterial agent, norfloxacin, with the bacterial topoisomerase, DNA gyrase. Membrane filtration and spin-column techniques were used to study the binding of [3H]norfloxacin to purified plasmid DNA, DNA gyrase, and complexes formed by adding gyrase to different forms of plasmid DNA. Consistent with previous results (Shen, L. L., and Pernet, A. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 301-311) little [3H]norfloxacin binds to reconstituted gyrase, but significant levels of drug bind nonspecifically to relaxed DNA. However, when DNA and gyrase are incubated together additional norfloxacin binding sites are detectable. These complex-dependent sites are distinguishable from those sites involved in nonspecific DNA binding in that the complex-dependent sites are saturable and they retain bound norfloxacin after centrifuging the complex through a spin column. In addition, extent of binding is influenced by the topological state of DNA used to form the complex. The complex-dependent norfloxacin binding sites are likely involved in the inhibition of the enzyme since saturation of these sites occurs in the same norfloxacin concentration range as the inhibition of DNA supercoiling activity. Moreover, there is a close correlation of norfloxacin-induced DNA breakage with levels of norfloxacin bound to complexes of gyrase and relaxed DNA. These findings provide the first direct correlation of quinolone binding with inhibition of enzyme activity and induction of DNA breakage, and they suggest that the inhibition of DNA gyrase by norfloxacin occurs as a result of binding to a site which appears after the formation of a gyrase-DNA complex.  相似文献   

14.
Escherichia coli DNA gyrase is comprised of two subunits, GyrA and GyrB. Previous studies have shown that GyrI, a regulatory factor of DNA gyrase activity, inhibits the supercoiling activity of DNA gyrase and that both overexpression and antisense expression of the gyrI gene suppress cell proliferation. Here we have analyzed the interaction of GyrI with DNA gyrase using two approaches. First, immunoprecipitation experiments revealed that GyrI interacts preferentially with the holoenzyme in an ATP-independent manner, although a weak interaction was also detected between GyrI and the individual GyrA and GyrB subunits. Second, surface plasmon resonance experiments indicated that GyrI binds to the gyrase holoenzyme with higher affinity than to either the GyrA or GyrB subunit alone. Unlike quinolone antibiotics, GyrI was not effective in stabilizing the cleavable complex consisting of gyrase and DNA. Further, we identified an 8-residue synthetic peptide, corresponding to amino acids (89)ITGGQYAV(96) of GyrI, which inhibits gyrase activity in an in vitro supercoiling assay. Surface plasmon resonance analysis of the ITGGQYAV-containing peptide-gyrase interaction indicated a high association constant for this interaction. These results suggest that amino acids 89--96 of GyrI are essential for its interaction with, and inhibition of, DNA gyrase.  相似文献   

15.
The B subunit of DNA gyrase (GyrB) consists of a 43 kDa N-terminal domain, containing the site of ATP binding and hydrolysis, and a 47 kDa C-terminal domain that is thought to play a role in interactions with GyrA and DNA. In cells containing a deletion of topA (the gene encoding DNA topoisomerase I) a compensatory mutation is found in gyrB. This mutation (gyrB-225) results in a two amino acid insertion in the N-terminal domain of GyrB. We found that cells containing this mutation are more sensitive than wild-type cells to quinolone drugs with respect to bacteriostatic and lethal action. We have characterised the mutant GyrB protein in vitro and found it to have reduced DNA supercoiling, relaxation, ATPase, and cleavage activities. The mutant enzyme is up to threefold more sensitive to quinolones than wild-type. The mutation also increases the affinity of GyrB for GyrA and DNA, while the affinity of quinolone for the enzyme-DNA complex is unaffected. We propose that the loss in activity is due to misfolding of the GyrB-225 protein, providing an example in which misfolding of one protein, DNA gyrase, suppresses a deficiency of another, topoisomerase I. The increased quinolone sensitivity is proposed to be a consequence of an altered conformation of the protein that renders quinolones better able to disrupt, rather than generate, gyrase-drug-DNA complexes.  相似文献   

16.
Pierrat OA  Maxwell A 《Biochemistry》2005,44(11):4204-4215
Microcin B17 (MccB17) is a DNA gyrase poison; in previous work, this bacterial toxin was found to slowly and incompletely inhibit the reactions of supercoiling and relaxation of DNA by gyrase and to stabilize the cleavage complex, depending on the presence of ATP and the DNA topology. We now show that the action of MccB17 on the gyrase ATPase reaction and cleavage complex formation requires a linear DNA fragment of more than 150 base pairs. MccB17 is unable to stimulate the ATPase reaction by stabilizing the weak interactions between short linear DNA fragments (70 base pairs or less) and gyrase, in contrast with the quinolone ciprofloxacin. However, MccB17 can affect the ATP-dependent relaxation of DNA by gyrase lacking its DNA-wrapping or ATPase domains. From these findings, we propose a mode of action of MccB17 requiring a DNA molecule long enough to allow the transport of a segment through the DNA gate of the enzyme. Furthermore, we suggest that MccB17 may trap a transient intermediate state of the gyrase reaction present only during DNA strand passage and enzyme turnover. The proteolytic signature of MccB17 from trypsin treatment of the full enzyme requires DNA and ATP and shows a protection of the C-terminal 47-kDa domain of gyrase, indicating the involvement of this domain in the toxin mode of action and consistent with its proposed role in the mechanism of DNA strand passage. We suggest that the binding site of MccB17 is in the C-terminal domain of GyrB.  相似文献   

17.
Knowing the entire sequence of the gene encoding the DNA gyrase Subunit A (gyrA) of Edwardsiella tarda could be very useful for confirming the role of gyrA in quinolone resistance. Degenerate primers for the amplification of gyrA were designed from consensus nucleotide sequences of gyrA from 9 different Gram-negative bacteria, including Escherichia coli. With these primers, DNA segments of the predicted size were amplified from the genomic DNA of E. tarda and then the flanking sequences were determined by cassette ligation-mediated polymerase chain reaction. The nucleotide sequence of gyrA was highly homologous to those of other bacterial species, in both the whole open-reading frame and the quinolone-resistance-determining region (QRDR). The 2637-bp gyrA gene encodes a protein of 878 amino acids, preceded by a putative promoter, ribosome binding site and inverted repeated sequences for cruciform structures of DNA. However, the nucleotide sequence of the flanking region did not show any homologies with those of other bacterial DNA gyrase Subunit B genes (gyrB) and suggested the gyrase genes, gyrA and gyrB, are non-continuous on the chromosome of E. tarda. All of the 12 quinolone-resistant isolates examined have an alteration within the QRDR, Ser83 --> Arg, suggesting that, in E. tarda, resistance to quinolones is primarily related to alterations in gyrA. Transformation with the full sequence of E. tarda gyrA bearing the Ser83 --> Arg mutation was able to complement the sequence of the gyrA temperature-sensitive mutation in the E. coli KNK453 strain and to induce increased resistance to quinolone antibiotics at 42 degrees C.  相似文献   

18.
Abstract Chromosomal DNA of different species of mycobacteria, Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium avium and Mycobacterium smegmatis , has been submitted to polymerase chain reaction using two oligonucleotide primers highly homologous to DNA sequences flanking the quinolone resistance-determining region in the gyrA gene of Escherichia coli and Staphylococcus aureus . For each of these mycobacterial species, a 150-bp DNA fragment hybridizing with an intragenic probe of the gyrA gene of E. coli K12 was obtained. The nucleotide sequences of the 108-bp fragments amplified from M. tuberculosis and M. avium were determined. The two sequences were 87% homologous. Except for one residue, their deduced amino acid sequences were identical and shared 67% homology with the quinolone resistance-determining region of the gyrase A subunits of E. coli and S. aureus . Sequencing of the 108-bp fragment amplified from an in vitro mutant of M. avium , highly resistant to fluoroquinolones, showed a point mutation leading to the substitution of Ala for Val at a position corresponding to residues involved in quinolone resistance in E. coli and S. aureus , i.e. Ser 83 for E. coli and Ser 84 for S. aureus .  相似文献   

19.
A potential region of drug-DNA interaction in the A subunit of DNA gyrase has previously been identified from crystallographic studies. The local amino acid sequence has been compared with similar regions in yeast topoisomerase II and human topoisomerase IIalpha. Three non- conserved, potentially solvent-accessible residues at positions 762, 763 and 766 in human topoisomerase IIalpha lie between well-conserved regions. The corresponding residues in GyrA (83, 84 and 87) have a high frequency of mutation in quinolone-resistant bacteria. Mutations in human topoisomerase IIalpha have been generated in an attempt to engineer ciprofloxacin sensitivity into this enzyme: M762S, S763A and M766D (each mutated to the identical amino acid present in gyrase), along with an M762S/S763A double mutant and a triple mutant. These enzymes were introduced into a temperature-sensitive yeast strain, deficient in topoisomerase II, for in vivo studies, and were overproduced for in vitro studies. The M766D mutation renders the enzyme incapable of supporting the temperature-sensitive strain at a non-permissive temperature. However, both M766D and the triple mutant enzymes can be overproduced and are fully active in vitro. The double mutant was impaired in its ability to cleave DNA and had reduced catalytic activity. The triple mutation confers a three-fold increase in sensitivity to ciprofloxacin in vitro and similar sensitivities to a range of other quinolones. The activity of the quinolone CP-115,953, a bacterial and eukaryotic topoisomerase II poison, was unaffected by any of these mutations. Mutations in this region were found to increase the sensitivity of the enzyme to the DNA intercalating anti-tumour agents m-AMSA and ellipticine, but confer resistance to the non-intercalating agents etoposide, teniposide and merbarone, an effect that was maximal in the triple mutant. We have therefore shown the importance of this region in determining the sensitivity of topoisomerase II to drugs and have engineered increased sensitivity to quinolones.  相似文献   

20.
In Streptococcus pneumoniae, an H103Y substitution in the ATP binding site of the ParE subunit of topoisomerase IV was shown to confer quinolone resistance and hypersensitivity to novobiocin when associated with an S84F change in the A subunit of DNA gyrase. We reconstituted in vitro the wild-type topoisomerase IV and its ParE mutant. The ParE mutant enzyme showed a decreased activity for decatenation at subsaturating ATP levels and was more sensitive to inhibition by novobiocin but was as sensitive to quinolones. These results show that the ParE alteration H103Y alone is not responsible for quinolone resistance and agree with the assumption that it facilitates the open conformation of the ATP binding site that would lead to novobiocin hypersensitivity and to a higher requirement of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号