首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most Caucasians have two major liver aldehyde dehydrogenase isozymes, ALDH1 and ALDH2, while approximately 50% of Orientals have only ALDH1 isozyme, missing the ALDH2 isozyme. A remarkably higher frequency of acute alcohol intoxication among Orientals than among Caucasians could be related to the absence of the ALDH2 isozyme, which has a low apparent Km for acetaldehyde. Examination of liver extracts by two-dimensional crossed immunoelectrophoresis revealed that an atypical Japanese liver, which had no ALDH2 isozyme, contained an enzymatically inactive but immunologically cross-reactive material corresponding to ALDH2, beside the active ALDH1 isozyme. Therefore, the absence of ALDH2 isozyme in atypical Orientals is not due to regulatory mutation, gene deletion, or nonsense mutation, but must be due to a structural mutation in a gene for the ALDH2 locus, resulting in synthesis of enzymatically inactive abnormal protein.  相似文献   

2.
In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5′-promoter region of human, marmoset, and mouseALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5′-promoter region of the humanALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver.  相似文献   

3.
4.
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) isozyme phenotypes were determined in surgical and endoscopic biopsies of the stomach and duodenum by agarose isoelectric focusing. gamma-ADH was found to be the predominant form in the mucosal layer whereas beta-ADH was predominant in the muscular layer. Low-Km ALDH1 and ALDH2 were found in the stomach and duodenum. High-Km ALDH3 isozymes occurred only in the stomach but not in the duodenum. The isozyme patterns of gastric mucosal ALDH2 and ALDH3 remained unchanged in the fundus, corpus, and antrum. The stomach ALDH3 isozymes exhibited a Km value for acetaldehyde of 75 mM, and an optimum for acetaldehyde oxidation at pH 8.5. Since the Km value was high, ALDH3 contributed very little, if any, to gastric ethanol metabolism. The activities of ALDH in the gastric mucosa deficient in ALDH2 were 60-70% of that of the ALDH2-active phenotypes. These results indicate that Chinese lacking ALDH2 activity may have a lower acetaldehyde oxidation rate in the stomach during alcohol consumption.  相似文献   

5.
Summary A rare case of human liver cytosolic aldehyde dehydrogenase (isozyme II) variation discovered in a Chinese autopsy liver specimen is reported. While the major isozyme band was nearly absent, several additional minor bands were observed on isoelectric focusing gel. Rabbit antibodies to purified human liver ALDH II showed immunological cross-reactivity for the variant enzyme bands. The existence of additional minor bands indicates the presence of tetramer hybrid forms made up of normal and variant monomers. The observed abnormality may represent the heterozygous form of ALDH II variation. A similar variant was also detected in erythrocytes of a male Thai student.This paper is dedicated to Professor Dr. Karl Decker on his 60th birthday  相似文献   

6.
Kathmann EC  Naylor S  Lipsky JJ 《Biochemistry》2000,39(36):11170-11176
Rat liver contains two class 1 aldehyde dehydrogenases (ALDHs): a constitutive isozyme (ALDH1) and a phenobarbital-inducible isozyme (ALDH-PB). Defining characteristics of mammalian class 1 ALDHs include a homotetrameric structure, high expression in liver, sensitivity to the inhibitor disulfiram, and high activity for the oxidation of retinal. It is often presumed that ALDH-PB is the rat ortholog of mammalian ALDH1, and the identity of rat ALDH-PB is commonly interchanged with ALDH1. In this study, we characterized recombinant rat liver cytosolic ALDH1 and ALDH-PB. Previous reports indicate that ALDH-PB is a homodimer; however, we found by mass spectrometry and gel electrophoresis that it is a homotetramer. ALDH1 mRNA was highly expressed in untreated rat liver, while ALDH-PB had very weak expression, in contrast to a previous report that ALDH-PB mRNA is expressed in untreated rat liver. Rat liver ALDH1 had a high affinity for retinal (K(m) = 0.6 microM), while no oxidation by ALDH-PB could be detected with 20 microM retinal. ALDH1 was more efficient at oxidizing acetaldehyde, propionaldehyde, and benzaldehyde and was more sensitive to disulfiram inhibition. We conclude that rat liver ALDH1 is the ortholog of mammalian liver ALDH1. Furthermore, despite a high level of sequence identity and classification as a class 1 ALDH, ALDH-PB does not function like ALDH1. ALDH-PB is not merely an inducible ALDH1 isozyme; it is a distinct ALDH isozyme.  相似文献   

7.
Polyacrylamide gel isoelectric focusing (PAGE-IEF), cellulose acetate electrophoresis, and histochemical techniques were used to examine the tissue and subcellular distribution, genetics and biochemical properties of aldehyde dehydrogenase (ALDH) isozymes in a didelphid marsupial, the gray short-tail opossum (Monodelphis domestica). At least 14 zones of activity were resolved by PAGE-IEF and divided into five isozyme groups and three ALDH classes, based upon comparisons with properties previously reported for human, baboon, rat, and mouse ALDHs. Opossum liver ALDHs were distributed among cytosol (ALDHs 1 and 5) and large granular (mitochondrial) fractions (ALDHs 2 and 5). Similarly, kidney ALDHs were distributed between the cytosol (ALDH5) and the mitochondrial fractions (ALDHs 2, 4, and 5), whereas a major isozyme (ALDH3), found in high activity in cornea, esophagus, ear pinna, tail, and stomach extracts, was localized predominantly in the cytosol fraction. Phenotypic variants of the latter enzyme were shown to be inherited in a normal Mendelian fashion, with two alleles at a single locus (ALDH3) showing codominant expression. The data provided evidence for genetic identity of corneal, ear pinna, tail, and stomach ALDH3 and supported biochemical evidence from other mammalian species that this enzyme has a dimeric subunit structure.  相似文献   

8.
Human red cell aldehyde dehydrogenase (ALDH) resembles the liver cytosolic isozyme in numerous physicochemical properties. This study was undertaken to establish the structural relationship between the erythrocyte and liver ALDH isozymes. The purified red cell ALDH was S-(14C)-carboxymethylated, and cleaved with trypsin. The tryptic digest was fractionated using Sephadex and reversed-phase chromatography. All peptides analyzed were identified within the liver cytosolic enzyme structure. In each case the sequence obtained corresponds exactly to a segment from the human liver cytosolic ALDH. Thus, the erythrocyte enzyme, by virtue of its chemical and structural identity with the liver cytosolic enzyme, may serve as a suitable peripheral enzyme model to understand the cause and mechanism of alcohol abuse-related changes in liver cytosolic ALDH that has been found to be reduced in alcoholics.  相似文献   

9.
Polymorphism of aldehyde dehydrogenase and alcohol sensitivity   总被引:6,自引:0,他引:6  
H W Goedde  D P Agarwal 《Enzyme》1987,37(1-2):29-44
The metabolism of acetaldehyde has received considerable attention in the past years owing to its acute and chronic toxic effects in humans. Aldehyde dehydrogenase (ALDH) catalyzes the oxidation of acetaldehyde in liver and other organs. Two major isozymes of hepatic ALDH (ALDH I or E2 and ALDH II or E1), which differ in their structural and functional properties, have been characterized in humans. The ALDH I with a low Km for acetaldehyde is predominantly of mitochondrial origin and ALDH II which has a relatively higher Km is of cytosolic origin. An inherited deficiency of ALDH I isozyme has been found among Japanese and Chinese which is primarily responsible for producing acute alcohol sensitivity symptoms (flushing response) after drinking mild doses of alcohol. Biochemical, immunochemical and molecular genetics data indicate a structural mutation in the ALDH I isozyme gene responsible for the loss in catalytic activity. Population genetic studies indicate a wide prevalence of this ALDH polymorphism among individuals of Mongoloid race. Flushing response to alcohol shows familial resemblances and preliminary family data from Japan, China and Korea hint to an autosomal codominant inheritance for ALDH I isozyme deficiency. The ALDH polymorphism is apparently responsible for the low incidence of alcoholism in Japanese, Chinese and Koreans. Alcohol-induced sensitivity due to ALDH isozyme deficiency may act as an inhibitory factor against excessive alcohol drinking thereby imparting a protection against alcoholism.  相似文献   

10.
New disulphides synthesized on the basis of dithiocarboxylic acid derivatives and heterocyclic thiols containing the fluorine atoms were studied as applied to inhibit aldehyde dehydrogenase (ALDH) isozymes of the rat liver mitochondria. The most effective rat liver inhibitors of ALDH isozymes were revealed. Inhibition of the rat liver isozymes by disulphides I, II, IV, VI-VIII and fluorinated pyridine disulphide was found to be irreversible. The values of isozyme inactivation rate constants are reported. The ALDH inhibition by disulphides I, IV, VI-VIII was competitive both for the cofactor and for the substrate of the reaction. The protective effect of the NAD+ against ALDH I and II inactivation by disulfiram and disulphides I, IV, VI-VIII and X is shown. NADP+ protects isozyme II against inactivation by disulfiram and also disulphides I, VI-VIII.  相似文献   

11.
12.
Virtually all Caucasians have two major aldehyde dehydrogenase isozymes, ALDH1 and ALDH2, in their livers, while approximately 50% of Japanese and other Orientals are "atypical" in that they have only ALDH1 and are missing ALDH2. We previously demonstrated the existence of an enzymatically inactive but immunologically cross-reactive material (CRM) in atypical Japanese livers. Among 10 Japanese livers examined, five had ALDH1 but not ALDH2 isozyme. These are considered to be homozygous atypical at the ALDH2 locus. Four had both ALDH1 and ALDH2 components detected by starch gel electrophoresis, that is, they are apparently usual. However, biochemical and immunological studies revealed that three of these four livers contained CRM. These three livers should be heterozygous atypical in the ALDH2 locus, that is, genotype ALDH2(1)/ALDH2(2). A Japanese liver, as well as control Caucasian livers, had no CRM, and they must be homozygous usual ALDH2(1)/ALDH2(1). Although the number of liver specimens examined is limited, the frequencies of three genotypes determined in this study are compatible with the values calculated based on the genetic model that two common alleles ALDH2(1) and ALDH2(2) for the same locus are codominantly expressed in Orientals. The remaining liver had only ALDH2 isozyme and was missing ALDH1. This type was not previously found in Caucasians and Orientals. The two-dimensional crossed immunoelectrophoresis revealed the existence of a CRM corresponding to ALDH1 in this liver. The abnormality can be considered to be due to structural mutation at the ALDH1 locus producing a defective ALDH1 molecule, although other possibilities such as post-translational modifications are not ruled out.  相似文献   

13.
The mouse hepatoma cell line Hepa-1 was shown to express an aldehyde dehydrogenase (ALDH) isozyme which was inducible by TCDD and carcinogenic polycyclic aromatic hydrocarbons. The induced activity could be detected with benzaldehyde as substrate and NADP as cofactor (B/NADP ALDH). As compared with rat liver and hepatoma cell lines, the response was moderate (maximally 5-fold). There was an apparent correlation between this specific form of ALDH and aryl hydrocarbon hydroxylase (AHH) in the Hepa-1 wild-type cell line--in terms of inducibility by several chemicals. However, the magnitude of the response was clearly smaller for ALDH than for AHH. Southern blot analysis showed that a homologous gene (class 3 ALDH) was present in the rat and mouse genome. The gene was also expressed in Hepa-1 and there was a good correlation between the increase of class 3 ALDH-specific mRNA and B/NADP ALDH enzyme activity after exposure of the Hepa-1 cells to TCDD. It is concluded that class 3 ALDH is inducible by certain chemicals in the mouse hepatoma cell line, although the respective enzyme is not inducible in mouse liver in vivo.  相似文献   

14.
Substrate and coenzyme specificities of human liver and stomach aldehyde dehydrogenase (ALDH) isozymes were compared by staining with various aldehydes including propionaldehyde, heptaldehyde, decaldehyde, 2-furaldehyde, succinic semialdehyde, and glutamic -semialdehyde and with NAD+ or NADP+ on agarose isoelectric focusing gels. ALDH3 isozyme was isolated from a liver via carboxymethyl-Sephadex and blue Sepharose chromatographies and its kinetic constants for various substrates and coenzymes were determined. Consistent with the previously proposed genetic model for human ALDH3 isozymes (Yinet al., Biochem. Genet. 26:343, 1988), a single liver form and multiple stomach forms exhibited similar kinetic properties, which were strikingly distinct from those of ALDH1, ALDH2, and ALDH4 (glutamic -semialdehyde dehydrogenase). A set of activity assays using various substrates, coenzymes, and an inhibitor to distinguish ALDH1, ALDH2, ALDH3, and ALDH4 is presented. As previously reported in ALDH1 and ALDH2, a higher catalytic efficiency (V max/K m) for oxidation of long-chain aliphatic aldehydes was found in ALDH3, suggesting that these enzymes have a hydrophobic barrel-shape substrate binding pocket. Since theK m value for acetaldehyde for liver ALDH3, 83 mM, is very much higher than those of ALDH1 and ALDH2, ALDH3 thus represents an unique class of human ALDH isozymes and it appears not to be involved in ethanol metabolism.This work was supported by grants from the National Science Council and the Academia Sinica, Republic of China.  相似文献   

15.
A Yoshida  L C Hsu  V Davé 《Enzyme》1992,46(4-5):239-244
The major cytosolic aldehyde dehydrogenase isozyme (ALDH1) exhibits strong activity for oxidation of retinal to retinoic acid, while the major mitochondrial ALDH2 and the stomach cytosolic ALDH3 have no such activity. The Km of ALDH1 for retinal is about 0.06 mumol/l at pH 7.5, and the catalytic efficiency (Vmax/Km) for retinal is about 600 times higher than that for acetaldehyde. Thus, ALDH1 can efficiently produce retinoic acid from retinal in tissues with low retinal concentrations (< 0.01 mumol/l). The gene for ALDH1 has hormone response elements. These findings suggest that the major physiological substrate of human ALDH1 is retinal, and that its primary biological role is generation of retinoic acid resulting in modulation of cell differentiation including hormone-mediated development.  相似文献   

16.
Genetic variation of a carboxylesterase isozyme (EC 3.1.1.1) of the house mouse, designated ES-23, is described. ES-23 was found in kidney, liver, and intestine. The isozyme was resistant to inhibition by 10(-3) mol/liter eserine and was stained using alpha-naphthyl butyrate or 5-bromoindoxyl acetate as substrate. Five different phenotypes, ES-23A to ES-23E, could be distinguished by disc electrophoresis and by isoelectric focusing. ES-23 is controlled by a structural locus situated within the esterase gene cluster 2 on chromosome 8. An analysis of allele distribution among different strains suggested a separate structural locus for the isozyme, Es-23e, which is closely linked to the loci Es-2, Es-5, Es-7, and Es-11. Of the five phenotypes, only ES-23B was expressed in lung. This variation is apparently controlled by a cis-acting regulatory element, presumably a temporal locus, Es-23t, closely linked to the presumed structural locus Es-23e.  相似文献   

17.
V A Rizzoli  C R Rossi 《Enzyme》1988,39(1):28-43
In intact rat liver mitochondria acetaldehyde is oxidized by three functionally distinct dehydrogenase systems. Two of these reduce intramitochondrial nicotinamide adenine dinucleotide (NAD): one is operative with micromolar acetaldehyde concentrations and is stimulated by Mg2+, the other is operative with millimolar acetaldehyde concentrations and is stimulated by adenosine 5'-triphosphate (ATP). The third system reduces added NAD and is stimulated by rotenone. Connected to these systems, three aldehyde dehydrogenase isozymes (ALDH) have been purified: a low-Km ALDH activated by Mg2+, a high-Km ALDH activated by ATP and Mg2+, a high-Km ALDH activated by rotenone. The properties of some isozymes are affected by detergents. Thus, deoxycholate augments the stimulation of low-Km isozyme by Mg2+ and confers sensitivity to Mg2+ and ATP on one of the high-Km isozymes. A fourth isozyme has been purified. Its affinity for acetaldehyde is so low that it is very unlikely that acetaldehyde is the physiological substrate.  相似文献   

18.
Usual human livers contain two major aldehyde dehydrogenase isozymes, cytosolic ALDH1 component and mitochondrial ALDH2 component, while human livers with "atypical" phenotype have only ALDH1 isozyme and are missing ALDH2 isozyme. Approximately 50% of orientals are atypical in respect to ALDH isozymes. We previously demonstrated an existence of enzymatically inactive but immunologically cross-reactive material (CRM) in atypical oriental livers. ALDH1 and ALDH2 isozymes were purified to homogeneity from usual livers, and ALDH1 and CRM were purified from atypical oriental livers. Amino acid compositions of ALDH1 and ALDH2 were similar to, but not identical with, each other. Amino acid compositions of ALDH2 and CRM were identical within analytical errors. Subunit molecular size of ALDH1 estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 56,200 daltons, and that of ALDH2 was 52,600 daltons. The two isozymes did not contain a common subunit. Subunit molecular weight of CRM was identical with that of ALDH2. Double immunodiffusion precipitation revealed that ALDH1 and ALDH2 were immunologically analogous but not identical, and that CRM and ALDH2 were immunologically indistinguishable. These results support the genetic model that CRM is an abnormal defective protein resulting from a mutation of the ALDH2 locus.  相似文献   

19.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

20.
The cDNA and the gene (ALDH9) for a human aldehyde dehydrogenase isozyme, which has a high activity for oxidation of γ-aminobutyraldehyde and other amino aldehydes, were cloned and characterized. The cDNA has an open reading frame of 1479 bp encoding 493 amino acid residues. The gene is about 45 kb and consists of 10 coding exons interrupted by nine introns. The gene was assigned to chromosome 1q22–q23, using fluorescencein situhybridization. Northern blot hybridization indicated that the size of the mRNA is about 2.4 kb and that the gene is expressed at high levels in adult liver, skeletal muscle, and kidney and low levels in heart, pancreas, lung, and brain. The gene is polymorphic, i.e., C or T at nt 327 and C or G at nt 344.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号