首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Molecular organization of gap junction membrane channels   总被引:7,自引:0,他引:7  
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas formingin vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

3.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

4.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

5.
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K+/Cl? permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore.  相似文献   

6.
Gap junctions form channels that allow exchange of materials between cells and are composed of transmembrane protein subunits called connexins. While connexins are believed to mediate cellular signaling by permitting intercellular communication to occur, there is also increasing evidence that suggest connexins may mediate growth control via a junction-independent mechanism. Connexin43 (Cx43) is the most abundant gap junction protein found in astrocytes, and gliomas exhibit reduced Cx43 expression. We have previously observed that restoration of Cx43 levels in glioma cells led to increased expression of CCN3 (NOV) proteins. We now report that overexpression of Cx43 in C6-glioma cells (C6-Cx43) also upregulates the expression of CCN1 (Cyr61). Both CCN1 and CCN3 belong to the Cyr61/Connective tissue growth factor/Nephroblastoma-overexpressed (CCN) family of secretory proteins. The CCN proteins are tightly associated with the extracellular matrix and have important roles in cell proliferation and migration. CCN1 promotes growth in glioma cells, as shown by the increased proliferation rate of CCN1-overexpressing C6 cells. In addition to its effect on cell growth, CCN1 also increased the motility of glioma cells in the presence of extracellular substrates such as fibronectin. Gliomas expressing high levels of Cx43 preferentially upregulated CCN3 which resulted in reduced growth rate. CCN3 could also be observed in Cx43 gap junction plaques in confluent C6-Cx43H culture at the stationary phase of their growth. Our results suggest that the dissimilar growth characteristics between high and low Cx43 expressors may be due to differential regulation of CCN3 by varying levels of Cx43.  相似文献   

7.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

8.
Propagation of electrical activity between myocytes in the heart requires gap junction channels, which contribute to coordinated conduction of the heartbeat. Some antipsychotic drugs, such as thioridazine and its active metabolite, mesoridazine, have known cardiac conduction side-effects, which have resulted in fatal or nearly fatal clinical consequences in patients. The physiological mechanisms responsible for these cardiac side-effects are unknown. We tested the effect of thioridazine and mesoridazine on gap junction-mediated intercellular communication between cells that express the major cardiac gap junction subtype connexin 43. Micromolar concentrations of thioridazine and mesoridazine inhibited gap junction-mediated intercellular communication between WB-F344 epithelial cells in a dose-dependent manner, as measured by fluorescent dye transfer. Kinetic analyses demonstrated that inhibition by 10 μmol/L thioridazine occurred within 5 min, achieved its maximal effect within 1 h, and was maintained for at least 24 h. Inhibition was reversible within 1 h upon removal of the drug. Western blot analysis of connexin 43 in a membrane-enriched fraction of WB-F344 cells treated with thioridazine revealed decreased amounts of unphosphorylated connexin 43, and appearance of a phosphorylated connexin 43 band that co-migrated with a “hyperphosphorylated” connexin 43 band present in TPA-inhibited cells. When tested for its effects on cardiomyocytes isolated from neonatal rats, thioridazine decreased fluorescent dye transfer between colonies of beating myocytes. Microinjection of individual cells with fluorescent dye also showed inhibition of dye transfer in thioridazine-treated cells compared to vehicle-treated cells. In addition, thioridazine, like TPA, inhibited rhythmic beating of myocytes within 15 min of application. In light of the fact that the thioridazine and mesoridazine concentrations used in these experiments are in the range of those used clinically in patients, our results suggest that inhibition of gap junction intercellular communication may be one factor contributing to the cardiac side-effects observed in some patients taking these medications.  相似文献   

9.
Gap junctional intercellular communication (GJIC) plays a critical role in the control of multiple cell behavior as well as in the maintenance of tissue and organ homeostasis. However, mechanisms involved in the regulation of gap junctions (GJs) have not been fully understood. Given endoplasmic reticulum (ER) stress and dysfunction of GJs coexist in several pathological situations, we asked whether GJs could be regulated by ER stress. Incubation of mesangial cells with ER stress‐inducing agents (thapsigargin, tunicamycin, and AB5 subtilase cytotoxin) resulted in a decrease in connexin 43 (Cx43) expression at both protein and mRNA levels. This was accompanied by a loss of GJIC, as evidenced by the reduced numbers of dye‐coupled cells after single cell microinjection or scrape loading dye transfer. Further studies demonstrated that ER stress significantly inhibited the promoter activity of the Cx43 gene, reduced [35S]‐methionine incorporation into Cx43 protein and accelerated degradation of Cx43. ER stress also decreased the Cx43 protein levels in several different cell types, including human umbilical vein endothelial cells, mouse‐derived renin‐secreting cells and human hepatoma cells. Furthermore, induction of ER stress by hypoxic chemicals thenoyltrifluoroacetone and cobalt chloride was found to be associated with a reduction in Cx43. Our findings thus reveal a close link between ER stress and GJs. ER stress may represent a novel mechanism underlying the altered GJs in a variety of pathological situations. J. Cell. Biochem. 107: 973–983, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.  相似文献   

11.
12.
13.
Amniotic fluid‐derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte‐like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2‐week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co‐culture group. Protein expression of cardiac calsequestrin 2 was up‐regulated in direct transmembrane co‐cultures and media control cultures compared to the other experimental groups, but all groups were up‐regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape‐loading dye transfer assay, was significantly increased in direct transmembrane co‐cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co‐culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co‐culture does enhance connexin‐43‐mediated gap junction communication between AFSC.  相似文献   

14.
Connexin43 (Cx43) is a ubiquitously expressed member of the gap junction protein family that mediates gap junction intercellular communication (GJIC) by allowing exchange of cytosolic materials. Previous studies have used Cx43 truncated at the cytoplasmic tail (C‐tail) to demonstrate that the C‐tail is essential to regulate cell growth and motility. Therefore, the aim of our study was to delineate the respective role of the truncated Cx43 and the C‐tail in mediating Cx43‐dependent signaling. A truncated Cx43 expressing the channel part of the protein (TrCx43, amino acid 1–242) and a construct encompassing only the C‐tail from amino acid 243 (243Cx43) were transduced into LN18 human glioma cells. Our results showed that the ability of Cx43 to suppress growth was independent of GJIC as assessed by dye transfer, but was dependent on the presence of a rigid extracellular matrix. We further demonstrated that the C‐tail alone is sufficient to promote motility. Surprisingly, Cx43 is also able to increase migration in the absence of the C‐tail, suggesting the presence of at least two distinct signaling mechanisms utilized by Cx43 to affect motility. Finally, we used time‐lapse imaging to examine the behavior of migrating cells and it was apparent that the C‐tail was associated with a lamellipodia‐based migration not observed in either mock or TrCx43 expressing LN18 cells. Our study shows for the first time that a free C‐tail is sufficient to induce Cx43‐dependent changes in cell morphology and that Cx43 signaling is linked to the regulation of the actin cytoskeleton. J. Cell. Biochem. 110: 589–597, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Mice harboring a null mutation in the gap junction protein connexin43 (Cx43) die shortly after birth due to an obstruction of the right ventricular outflow tract of the heart. These hearts exhibit prominent pouches at the base of the pulmonary outlet, i.e., morphological abnormalities that were ascribed to Cx43-deficiency in neural crest cells. In order to examine the Cx43 expression pattern in neural crest cells and derived tissues and to test whether neural crest-specific deletion of Cx43 leads to the conotruncal defects seen in Cx43null mice, we ablated Cx43 using a Wnt1-Cre transgene. Deletion of Cx43 was complete and occurred in neural crest cells as well as in neural crest-derived tissues. Nevertheless, hearts of mice lacking Cx43 specifically in neural crest cells were indistinguishable from controls. Thus, the morphological heart abnormalities of Cx43 null mice are most likely not caused by lack of Cx43 in neural crest cells.  相似文献   

16.
Connexins, gap junctions, and coupling are obligatory features of both endocrine and exocrine glandular epithelia. Evidence from these two types of tissues, and particularly from pancreatic islets and acini, indicates that cell-to-cell communication via gap junction channels is required for proper biosynthesis, storage, and release of specific secretory products. However, endocrine and exocrine glands express a different set of connexins and show opposite connexin and coupling changes in relation with the activation and inhibition of their secretory function. Also, several hormones modulate connexin and coupling expression, and junctional coupling affects hormonal stimulation. These observations indicate that gap junction channels play an important role in the control of secretion and hormonal action.  相似文献   

17.
Astrocytes play a well-established role in brain metabolism, being a key element in the capture of energetic compounds from the circulation and in their delivery to active neurons. Their metabolic status is affected in many pathological situations, such as gliomas, which are the most common brain tumors. This proliferative dysfunction is associated with changes in gap junctional communication, a property strongly developed in normal astrocytes studied both in vitro and in vivo. Here, we summarize and discuss the findings that have lead to the identification of a link between gap junctions, glucose uptake, and proliferation. Indeed, the inhibition of gap junctional communication is associated with an increase in glucose uptake due to a rapid change in the localization of both GLUT-1 and type I hexokinase. This effect persists due to the up-regulation of GLUT-1 and type I hexokinase and to the induction of GLUT-3 and type II hexokinase. In addition, cyclins D1 and D3 have been found to act as sensors of the inhibition of gap junctions and have been proposed to play the role of mediators in the mitogenic effect observed. Conversely, in C6 glioma cells, characterized by a low level of intercellular communication, an increase in gap junctional communication reduces glucose uptake by releasing type I and type II hexokinases from the mitochondria and decreases the exacerbated rate of proliferation due to the up-regulation of the Cdk inhibitors p21 and p27. Identification of the molecular actors involved in these pathways should allow the determination of potential therapeutic targets that could lead to the testing of alternative strategies to prevent, or at least slow down, the proliferation of glioma cells.  相似文献   

18.
Summary Detergent-solubilized ovine lens membrane proteins, enriched in the 70-kDa gap junction component (MP70), were reconstituted into planar lipid bilayers and analyzed for channel activities. Three distinct activities were found. Those showing conductance steps of 290 pS (symmetrical 150-mM KCl solutions) had properties similar to those reported earlier for MIP26 (Ehring, G.R., Zampighi, G., Horwitz, J., Bok, D., Hall, J.E. 1990. J. Gen. Physiol. 96:631–664.) of which minor amounts were normally present in the detergent-solubilized preparations. Two novel channel activities had unitary conductances of 90 and 45 pS, were halothane sensitive and did not discriminate between sodium and potassium ions. The 90-pS channel was asymmetrically voltage dependent, and its properties would be consistent with the expected properties of junctional hemichannels.This work was supported by grants from the Health Research Council of New Zealand, from the New Zealand Lottery Grants Board and from the New Zealand Vice Chancellor's Committee Fund.  相似文献   

19.
Summary The development of the rhabdomeric pattern in the compound eye ofDrosophila has been studied using combined transplantation and electron microscope techniques. In a first series of experiments eye imaginal discs of increasing age were implanted into larvae ready to pupate, thus losing variable amounts of the normal time for development. A sequence of differentiative abilities was found in the metamorphosed test pieces. As far as the photoreceptor cells are concerned, the most prominent steps of this sequence are: ability to form groups with other similar elements, anatomical polarization of microvilli, establishment of the rhabdomeric pattern and formation of an equator line. The stability of determination of the equator line was tested in a second experimental series. Fragment of different topographical origin within the mature eye anlage were brought to metamorphosis by implantation into larvae ready to pupate. It was found that an equator line differentiates only in those pieces which according to the published anlage maps contain the prospective equator region prior to metamorphosis. The mitotic abilities of implanted eye imaginal discs were investigated by means of in vitro3H-thymidine pulse-labelling and light microscope autoradiography of the differentiated test pieces. During the third larval stage the eye anlage is traversed by two consecutive mitotic waves, each one of them producing different categories of receptor cells. The first, anterior wave predominantly produces cells oriented toward the poles of the eye within the ommatidia, while the second, posterior wave gives rise to elements exclusively in an equatorial position. The dynamics of this proliferation are discussed in relation to the findings in the implantation experiments. Silver-grain counts support the possibility that at least two successive cell divisions occur in the eye anlage between labeling with tritiated thymidine and beginning of morphological differentiation. The relevance of this finding for the understanding of the concept of acquisition of competence is discussed.  相似文献   

20.
BACKGROUND: Elevated homocysteine levels during embryonic development can result in neural tube and cardiovascular defects. The mechanisms that underlie the toxic effect of homocysteine are largely unknown. METHODS: We cultured mouse neural tube explants to study the effects of homocysteine on the migratory behavior of neural crest cells and on the levels of the gap junction protein Connexin43 (C x 43) and the actin- and C x 43-interacting protein ZO-1. RESULTS: Homocysteine exposure resulted in a significantly augmented maximal migration distance (MMD). The level of C x 43 immunolabeling was 2 times higher in the cytoplasm and cell protrusions of neural crest cells in homocysteine-treated cultures than in control cultures. Furthermore, colocalization of C x 43 and ZO-1 was increased in neural crest cell protrusions by this treatment. CONCLUSION: Increased C x 43 levels were previously shown to result in abnormal embryonic development. Our data raises the hypothesis that the embryotoxic effects of homocysteine may be mediated in part by its effects on C x 43 expression level and gap junction function in neural crest cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号