首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In the course of an attempt to identify genes that encode Escherichia coli dihydropteridine reductase (DHPR) activities, a chromosomal DNA fragment that directs synthesis of two soluble polypeptides of Mr 44000 and 46000 was isolated. These proteins were partially purified and were identified by determination of their N-terminal amino acid sequences. The larger was serine hydroxymethyltransferase, encoded by the glyA gene, while the smaller was the previously described product of an unnamed gene closely linked to glyA, and transcribed in the opposite direction. Soluble extracts of E. coli cells that overproduced the 44 kDa protein had elevated DHPR activity, and were yellow in colour. Their visible absorption spectra were indicative of a CO-binding b-type haemoprotein that is high-spin in the reduced state. The sequence of the N-terminal 139 residues of the protein, deduced from the complete nucleotide sequence of the gene, had extensive homology to almost all of Vitreoscilla haemoglobin. We conclude that E. coli produces a soluble haemoglobin-like protein, the product of the hmp gene (for haemoprotein). Although the protein has DHPR activity, it is distinct from the previously purified E. coli DHPR.  相似文献   

2.
Although a subpopulation of mRNAs has been identified as translocated to the dendrites or the synaptic regions of neurons, the translocational mechanism has not been elucidated. To find mRNAs enriched in synapses, we compared the synaptosomal mRNAs with those from whole forebrain using differential display (DD). We cloned one of these mRNAs, which encoded a novel 31 kDa protein (PMES-2). PMES-2 mRNA was specifically transcribed in the brain and was present in the dendrites of the hippocampal neurons. PMES-2 protein was partly localized in the postsynaptic density. Although this protein is very similar to human NABC1 protein, its function is still unknown.  相似文献   

3.
The murI gene of Escherichia coli was recently identified on the basis of its ability to complement the only mutant requiring D-glutamic acid for growth that had been described to date: strain WM335 of E. coli B/r (P. Doublet, J. van Heijenoort, and D. Mengin-Lecreulx, J. Bacteriol. 174:5772-5779, 1992). We report experiments of insertional mutagenesis of the murI gene which demonstrate that this gene is essential for the biosynthesis of D-glutamic acid, one of the specific components of cell wall peptidoglycan. A special strategy was used for the construction of strains with a disrupted copy of murI, because of a limited capability of E. coli strains grown in rich medium to internalize D-glutamic acid. The murI gene product was overproduced and identified as a glutamate racemase activity. UDP-N-acetylmuramoyl-L-alanine (UDP-MurNAc-L-Ala), which is the nucleotide substrate of the D-glutamic-acid-adding enzyme (the murD gene product) catalyzing the subsequent step in the pathway for peptidoglycan synthesis, appears to be an effector of the racemase activity.  相似文献   

4.
The pcsA gene is identical to dinD in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
The pcsA68 mutant of Escherichia coli is a cold-sensitive mutant which forms long filaments with a large nucleoid in the central region at 20 degrees C. We here show that (i) the coding region for the pcsA gene is identical with orfY located upstream of pyrE and can be deleted without loss of viability; (ii) pcsA is also identical to dinD, a DNA damage-inducible gene, whose expression is regulated by the LexA-RecA system; (iii) the cold-sensitive phenotype of the pcsA68 mutation is suppressed by delta recA or lexA1 (Ind-) mutation, but not by sulA inactivation; (iv) overproduction of PcsA68 leads to inhibition of cell growth in recA+ and delta recA strains at 20 and 37 degrees C, but PcsA+ does not show such an effect at any temperature; (v) SOS response is induced in the pcsA68 mutant cells at 20 degrees C. We discuss the possible function of the pcsA gene, comparing it with the sulA or the dif-xerCD function. We also describe a new method for gene disruption with positive and negative selection.  相似文献   

5.
6.
The ams+ gene, which influences the stability of mRNA in Escherichia coli was cloned in pBR322. The product of the gene, which is a 17,000-dalton protein, was expressed in expression vector pRC23, a derivative of pBR322. The molecular weight is consistent with sequencing analysis which shows that the gene contains 595 nucleotides and has an open reading frame of 149 amino acids. We discussed the possible role(s) of the ams+ gene product in affecting mRNA stability.  相似文献   

7.
By in vitro recombination we have constructed hybrid plasmids which can suppress the increased methylmethane sulfonate sensitivity caused by the alkA1 mutation in Escherichia coli. Since the cloned DNA fragment was mapped at 44 to 45 min of the E. coli K12 genetic map, an area where the alkA gene is located, we conclude that the cloned DNA fragment contains the alkA gene itself but not other gene(s) that suppresses the alkA mutation. Specific labeling of plasmid-encoded proteins by the maxicell method revealed that the alkA codes for a polypeptide whose molecular weight is about 30,000. When cells harboring the alkA+ plasmids were grown in the presence of low doses of a simple alkylating agent (adapted condition), the activity of 3-methyladenine DNA glycosylase II was increased. The enzyme activity was copurified with the Mr 30,000 polypeptide. These results indicate that the alkA gene codes for 3-methyladenine DNA glycosylase II. Taking advantage of overproduction of the alkA protein in adapted cells that harbor multicopy plasmids carrying the alkA+ gene, 3-methyladenine DNA glycosylase II has been purified to apparent physical homogeneity.  相似文献   

8.
The Escherichia coli dnaJ gene product is required for bacteriophage lambda DNA replication at all temperatures. It is also essential for bacterial viability in at least some conditions, since mutations in it result in temperature-sensitive bacterial growth. We have previously cloned the dnaJ gene and shown that its product migrates as a Mr 37,000 polypeptide under denaturing conditions. Here we present the primary DNA sequence of the dnaJ gene. It codes for a processed basic protein (63 basic and 51 acidic amino acids) composed of 375 amino acids totaling Mr 40,973. The predicted NH2-terminal amino acid sequence, overall amino acid composition, and isoelectric point agree well with those of the purified protein. We present evidence that the rate of expression of the dnaJ protein is increased by heat shock under the control of the htpR (rpoH) gene product.  相似文献   

9.
Berg L  Lopper ME 《PloS one》2011,6(9):e24494
Primosome protein PriB is a single-stranded DNA-binding protein that serves as an accessory factor for PriA helicase-catalyzed origin-independent reinitiation of DNA replication in bacteria. A recent report describes the identification of a novel PriB protein in Klebsiella pneumoniae that is significantly shorter than most sequenced PriB homologs. The K. pneumoniae PriB protein is proposed to comprise 55 amino acid residues, in contrast to E. coli PriB which comprises 104 amino acid residues and has a length that is typical of most sequenced PriB homologs. Here, we report results of a sequence analysis that suggests that the priB gene of K. pneumoniae encodes a 104-amino acid PriB protein, akin to its E. coli counterpart. Furthermore, we have cloned the K. pneumoniae priB gene and purified the 104-amino acid K. pneumoniae PriB protein. Gel filtration experiments reveal that the K. pneumoniae PriB protein is a dimer, and equilibrium DNA binding experiments demonstrate that K. pneumoniae PriB's single-stranded DNA-binding activity is similar to that of E. coli PriB. These results indicate that the PriB homolog of K. pneumoniae is similar in structure and in function to that of E. coli.  相似文献   

10.
Mutations at the Escherichia coli prlC locus suppress the export defect of certain lamB signal sequence mutations. The Salmonella typhimurium opdA gene encodes an endoprotease that can participate in the catabolism of certain peptides and is required for normal development of phage P22. Plasmids carrying either the wild-type (pTC100 prlC+) or suppressor alleles of prlC complemented all phenotypes associated with an S. typhimurium opdA mutation. A plasmid carrying an amber mutation in prlC [prlC31(AM)] was unable to complement except in an amber suppressor background. Tn1000 insertions which eliminated the ability of pTC100 (prlC+) to complement opdA mapped to the region of the plasmid shown by deletion analysis and subcloning to contain prlC. The nucleotide sequence of a 2.7-kb fragment including this region was determined, revealing an open reading frame encoding a 77-kDa protein. The sequences of this open reading frame and its putative promoter region were very similar (84% nucleotide sequence identity and 95% amino acid identity) to those of S. typhimurium opdA, showing that these genes are homologs. The nucleotide sequence of the prlC1 suppressor allele was determined and predicts an in-frame duplication of seven amino acids, providing further confirmation that the prlC suppressor phenotype results from changes in the endopeptidase OpdA.  相似文献   

11.
Mutants of Bacillus subtilis with electrophoretic variants of ribosomal protein L1, L5, L9, or L11 were used to determine the order of the genes for these proteins by transformation experiments. The proteins are homologous with Escherichia coli proteins L1, L10, L12, and L11, respectively; using the gene locus designations based on this correspondence, we determined the order of the loci to be cysA-rplK-rplA-rplJ-rplL-rpoB. The order of the last five loci was identical to that of E. coli.  相似文献   

12.
13.
Glutaredoxins (GRXs) are ubiquitous GSH-dependent oxidoreductases, which catalyze the reduction of protein-glutathionyl-mixed disulfides and are considered to play an important role in the enzymatic regulation of redox-sensitive proteins. In this paper, we describe the identification and characterization of a new human homologue of the SH3BGR gene, named SH3BGRL3 (SH3 domain binding glutamic acid-rich protein like 3). SH3BGRL3 is widely expressed and codes for a highly conserved small protein, which shows a significant similarity to Glutaredoxin 1 (GRX1) of Escherichia coli and is predicted to belong to the Thioredoxin Superfamily. However, the SH3BGRL3 protein lacks both the conserved cysteine residues, which characterize the enzymatic active site of GRX. This structural feature raises the possibility that SH3BGRL3 could function as an endogenous modulator of GRX biological activity. EGFP-SH3BGRL3 fusion protein expressed in COS-7 cells localizes both to the nucleus and to the cytoplasm. The SH3BGRL3 gene was mapped to chromosome 1p34.3-35.  相似文献   

14.
Radioactive elongation factor Tu coded by either the tufA or the tufB gene of Escherichia coli K-12 was isolated from cells incubated with a mixture of radioactive amino acids after infection with the defective lambda phage particles that carry either of these genes. Two-dimensional chromatographic analyses of tryptic digests of the tufB gene product revealed about 50 radioactive spots. These same spots plus an additional one were also found in tryptic digests of the tufA gene product. Furthermore, these peptide maps are qualitatively the same as those of the elongation factor Tu obtained from two separate isolates of uninfected E. coli K-12 or from rel+ and relA strains of E. coli B. Because the number of spots recovered is consistent with the number of trypsin-sensitive sites, these analyses indicate that the tufA and tufB genes have not significantly diverged from each other.  相似文献   

15.
Escherichia coli protein X is the recA gene product.   总被引:16,自引:0,他引:16  
Escherichia coli protein X is known to be made in large amounts following DNA damage or inhibition of DNA replication. We have shown that it is identical to the recA gene product by partial proteolytic digestion of the radiochemically pure proteins and analysis by electrophoresis on polyacrylamide-sodium dodecyl sulfate gels.  相似文献   

16.
We have cloned a yeast gene, SKO1, which in high copy number suppresses lethal overexpression of cAMP-dependent protein kinase. SKO1 encodes a bZIP protein that binds to the CRE motif, TGACGTCA. We found that SKO1 also binds to a CRE-like site in SUC2, a yeast gene encoding invertase which is under positive control by cAMP. A disruption of the SKO1 gene causes a partial derepression of SUC2, indicating that SKO1 is a negative regulator of the SUC2 gene. SKO1 interacts positively with MIG1, a zinc finger protein that mediates glucose repression of SUC2. A kinetic analysis revealed a complex regulation of the SUC2 mRNA in response to glucose. First, MIG1 mediates a rapid and strong repression of SUC2, which is complete within 10 minutes. Second, a MIG1-independent process causes a further slow reduction in the mRNA. Third, in the absence of MIG1, there is also a rapid but transient glucose induction of the SUC2 mRNA. This induction is correlated with a transient loss of SKO1-dependent repression.  相似文献   

17.
18.
A new osmotically inducible gene in Escherichia coli, osmY, was induced 8- to 10-fold by hyperosmotic stress and 2- to 3-fold by growth in complex medium. The osmY gene product is a periplasmic protein which migrates with an apparent molecular mass of 22 kDa on sodium dodecyl sulfate-polyacrylamide gels. A genetic fusion to osmY was mapped to 99.3 min on the E. coli chromosome. The gene was cloned and sequenced, and an open reading frame was identified. The open reading frame encoded a precursor protein with a calculated molecular weight of 21,090 and a mature protein of 18,150 following signal peptide cleavage. Sequencing of the periplasmic OsmY protein confirmed the open reading frame and defined the signal peptide cleavage site as Ala-Glu. A mutation caused by the osmY::TnphoA genetic fusion resulted in slightly increased sensitivity to hyperosmotic stress.  相似文献   

19.
The product of the EUG1 gene of Saccharomyces cerevisiae is a soluble endoplasmic reticulum protein with homology to both the mammalian protein disulfide isomerase (PDI) and the yeast PDI homolog encoded by the essential PDI1 gene. Deletion or overexpression of EUG1 causes no growth defects under a variety of conditions. EUG1 mRNA and protein levels are dramatically increased in response to the accumulation of native or unglycosylated proteins in the endoplasmic reticulum. Overexpression of the EUG1 gene allows yeast cells to grow in the absence of the PDI1 gene product. Depletion of the PDI1 protein in Saccharomyces cerevisiae causes a soluble vacuolar glycoprotein to accumulate in its endoplasmic reticulum form, and this phenotype is only partially relieved by the overexpression of EUG1. Taken together, our results indicate that PDI1 and EUG1 encode functionally related proteins that are likely to be involved in interacting with nascent polypeptides in the yeast endoplasmic reticulum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号