首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A database of X-ray crystal structures of double helical DNA oligomers has been used to analyse the role of the sugar-phosphate backbone in coupling the conformational properties of neighbouring dinucleotide steps. The base step parameters which are most strongly coupled to the backbone degrees of freedom are slide and shift, and these are the two dinucleotide step parameters which show strong correlations along a sequence: the value of slide follows the values in the neighbouring steps, whereas shift tends to alternate. This conformational coupling is mediated by the shared furanose rings at the step junctions: a change in the value of slide causes a change in the mean value of the same strand 3' and 5'-chi torsion angle, and a change in the mean value of the 3' and 5' sugar pseudo-rotation phase angle, P; a change in the value of shift causes a difference between the same strand 3' and 5'-chi in A-DNA and a difference between the 3' and 5'-P in B-DNA. We have used a database of tetranucleotide X-ray crystal structures to parameterise a simple model for the coupling of slide and shift. Using this junction model together with our dinucleotide step potential energy maps described previously, we can in principle calculate the structure of any DNA oligomer. The parameterisation indicates that the rotational step parameters are accurate to within 5 degrees, and the translational step parameters are accurate to within 0.5 A. The model has been used to study the potential energy surfaces of all possible tetranucleotide sequences, and the calculations agree well with the experimental data from X-ray crystal structures. Some dinucleotide steps are context independent (AA/TT, AT and TA), because the conformational properties of all possible neighbouring steps are compatible. When the conformational properties of the neighbours are not compatible, the behaviour of a step cannot be understood at the dinucleotide level. Thus the conformations of CG, GC and GG/CC are all strongly context dependent. The remaining mixed sequence steps show weakly context-dependent behaviour. The approach allows the calculation of the relative stability and flexibility of tetranucleotide sequences, and the results indicate why TATA is used as an origin of replication. Clear predictions are made about sequences which have not yet been characterised crystallographically. In particular, poly(CCA).poly(TGG) is predicted to have an unusual structure which lies between the C and D-DNA polymorphs.  相似文献   

2.
Abstract

Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible ?, ζ, α, β and γ backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain α/γ changes are accompanied by C3′ endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual ?/ζ combinations occur with C2′ (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all con- formational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

3.
Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597°) in one plane and very little curvature (10°) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30° per helical turn throughout most of the structure but that there are two sharper kinks of 50° at ± 2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500° of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50° kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30° curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome.  相似文献   

4.
The structurally correlated dihedral angles epsilon and zeta are known for their large variability within the B-DNA backbone. We have used molecular modelling to study both energetic and mechanical features of these variations which can produce BI/BII transitions. Calculations were carried out on DNA oligomers containing either YpR or RpY dinucleotides steps within various sequence environments. The results indicate that CpA and CpG steps favour the BI/BII transition more than TpA or any RpY step. The stacking energy and its intra- and inter-strand components explain these effects. Analysis of neighbouring base pairs reveals that BI/BII transitions of CpG and CpA are easiest within (Y)n(R)n sequences. These can also induce a large vibrational amplitude for TpA steps within the BI conformation.  相似文献   

5.
We announce the release of a web-based tool for DNA structure prediction (PREDICTOR) which allows the calculation of atomic structures of double-helical DNA with up to 150 Watson-Crick base pairs (http://farwer.staff.shef.ac.uk/ PREDICTOR). The semi-empirical method uses computational chemistry to extrapolate knowledge of sequence-dependent DNA structure contained in the X-ray crystal structure database. The properties of the base stacking interactions are treated theoretically, and an empirical model is used to add the conformational constraints imposed by the backbone. For DNA oligomers in the X-ray crystal structure database that were not used for parameterisation of the model, the method distinguishes A and B form DNA reasonably reliably, and the final structures are accurate to 2 ? rmsd. Simulation of a 150mer and a 494mer with experimentally confirmed bending clearly reproduces the bending whereas the predicted structure of a random 150mer does not show any curvature. Calculation times are 90 seconds for an octamer and 7 minutes for a 30mer.  相似文献   

6.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   

7.
We have analyzed the set of inter and intra base pair parameters for each dinucleotide step in single crystal structures of dodecamers, solved at high and medium resolution and all crystallized in P2(1)2(1)2(1) space group. The objective was to identify whether all the structures which have either the Drew-Dickerson (DD) sequence d[CGCGAATTCGCG] with some base modification or related sequence (non-DD), would display the same sequence dependent structural variability about its palindromic sequence, despite the molecule being bent at one end because of similar crystal lattice packing effect. Most of the local doublet parameters for base pairs steps G2-C3 and G10-C11 positions, symmetrically situated about the lateral two-fold, were significantly correlated between themselves. In non-DD sequences, significant correlations between these positional parameters were absent. The different range of local step parameter values at each sequence position contributed to the gross feature of smooth helix axis bending in all structures. The base pair parameters in some of the positions, for medium resolution DD sequence, were quite unlike the high-resolution set and encompassed a higher range of values. Twist and slide are the two main parameters that show wider conformational range for the middle region of non-DD sequence structures in comparison to DD sequence structures. On the contrary, the minor and major groove features bear good resemblance between DD and non-DD sequence crystal structure datasets. The sugar-phosphate backbone torsion angles are similar in all structures, in sharp contrast to base pair parameter variation for high and low resolution DD and non-DD sequence structures, consisting of unusual (epsilon = g-, xi = t) BII conformation at the 10th position of the dodecamer sequence. Thus examining DD and non-DD sequence structures packed in the same crystal lattice arrangement, we infer that inter and intra base pair parameters are as symmetrically equivalent in its value as the symmetry related step for the palindromic DD sequence about lateral two-fold axis. This feature would lead us to agree with the conclusion that DNA conformation is not substantially affected by end-to-end or lateral inter-molecular interaction due to crystal lattice packing effect. Non-DD sequence structures acquire step parameter values which reflect the altered sequence at each of the dodecamer sequence position in the orthorhombic lattice while showing similar gross features of DD sequence structures.  相似文献   

8.
It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.  相似文献   

9.
Sugar phosphate backbone conformations are a structural element inextricably involved in a complete understanding of specific recognition nucleic acid ligand interactions, from early stage discrimination of the correct target to complexation per se, including any structural adaptation on binding. The collective results of high resolution DNA, RNA and protein/DNA crystal structures provide an opportunity for an improved and enhanced statistical analysis of standard and unusual sugar-phosphate backbone conformations together with corresponding dinucleotide sequence effects as a basis for further exploration of conformational effects on binding. In this study, we have analyzed the conformations of all relevant crystal structures in the nucleic acids data base, determined the frequency distribution of all possible epsilon, zeta, alpha, beta and gamma backbone angle arrangements within four nucleic acid categories (A-RNA and A-DNA, free and bound B-DNA) and explored the relationships between backbone angles, sugar puckers and selected helical parameters. The trends in the correlations are found to be similar regardless of the nucleic acid category. It is interesting that specific structural effects exhibited by the different unusual backbone sub-states are in some cases contravariant. Certain alpha/gamma changes are accompanied by C3' endo (north) sugars, small twist angles and positive values of base pair roll, and favor a displacement of nucleotide bases towards the minor groove compared to that of canonical B form structures. Unusual epsilon/zeta combinations occur with C2' (south) sugars, high twist angles, negative values of base pair roll, and base displacements towards the major groove. Furthermore, any unusual backbone correlates with a reduced dispersion of equilibrium structural parameters of the whole double helix, as evidenced by the reduced standard deviations of almost all conformational parameters. Finally, a strong sequence effect is displayed in the free oligomers, but reduced somewhat in the ligand bound forms. The most variable steps are GpA and CpA, and, to a lesser extent, their partners TpC and TpG. The results provide a basis for considering if the variable and non-variable steps within a biological active sequence precisely determine morphological structural features as the curvature direction, the groove depth, and the accessibility of base pair for non covalent associations.  相似文献   

10.
11.
Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence‐directed features, such as small roll values for the purine–pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near‐zero slide to be most favorable for the purine–pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar–phosphate backbone with C3′‐endo sugars and this demands C1′–C1′ distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1′–C1′ distance from the mean value, to the recent DFT‐D functionals, specifically ωB97X‐D appears to predict reliable energy contour for AU/AU step. Such distance‐based penalty improves energy contours for the other purine–pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107–120, 2014.  相似文献   

12.
The crystal structure of d(CCCCGGGG) has been determined at a resolution of 2.25 A. The oligomers crystallize as A-DNA duplexes occupying crystallographic two-fold axes. The backbone conformation is, in general, similar to that observed in previously reported crystal structures of A-DNA fragments, except for the central linkage, where it adopts an extended structure resulting from all trans conformation at the P-O5'-C5'-C4' bonds. This type of conformation facilitates interstrand stacking between the guanines at the C-G site. The local helix twist at this step is very small (25 degrees) compared to an overall average of 33.5 degrees. The unique structure of the C-G base-pair step, namely the extended backbone and the distinct stacking geometry, may be an important feature in the recognition mechanism between double-stranded DNA molecules and restriction endonucleases such as Msp I, which cuts the sequence CCGG very specifically with a rate unaffected by neighboring base pairs.  相似文献   

13.
Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na+‐ions (dDMPs) have demonstrated that the main characteristics of Watson‐Crick (WC) right‐handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar‐phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar‐phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr‐Pur from Pur‐Pyr, and Pur‐Pyr from Pyr‐Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar‐phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z‐family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 640–650, 2014.  相似文献   

14.
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5′–C5′–C4′–C3′) from canonical to alternative conformations and/or C2′-endo → C3′-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.  相似文献   

15.
16.
17.
Abstract

The crystal structure of d(CCCCGGGG) has been determined at a resolution of 2.25Å. The oligomers crystallize as A-DNA duplexes occupying crystallographic two-fold axes. The backbone conformation is, in general, similar to that observed in previously reported crystal structures of A-DNA fragments, except for the central linkage, where it adopts an extended structure resulting from all trans conformation at the P-05′-C5′-C4′ bonds. This type of conformation facilitates interstrand stacking between the guanines at the C-G site. The local helix twist at this step is very small (25°) compared to an overall average of 33.5°. The unique structure of the C-G base-pair step, namely the extended backbone and the distinct stacking geometry, may be an important feature in the recognition mechanism between double- stranded DNA molecules and restriction endonucleases such as Msp I, which cuts the sequence CCGG very specifically with a rate unaffected by neighboring base pairs.  相似文献   

18.
We have used a computational model to calculate the potential energy surface for dinucleotide steps in double helical DNA as a function of the two principal degrees of freedom, slide and shift. By using a virtual bond to model the constraints imposed by the sugar-phosphate backbone, twist, roll, tilt and rise can be simultaneously optimised for any given values of slide and shift. Thus we have been able to construct complete conformational maps for all step types. For some steps, the maps agree well with experimental data from X-ray crystal structures, but other steps appear to be strongly perturbed by the effects of context (conformational coupling with the neighbouring steps). The optimised values of twist and roll show sequence-dependent variations consistent with the crystal structure data. The conformational maps allow us to construct adiabatic paths, and hence calculate the flexibility of each step with respect to slide and shift. Again the results agree well with the available experimental assignments of flexibility: YR steps, CA/TG and CG, are the most flexible and RR steps, such as AA, the least flexible.  相似文献   

19.
20.
Abstract It is well known, that local B→A transformation in DNA is involved in several biological processes. In vitro B?A transition is sequence-specific. The physical basis of this specificity is not known yet. Here we analyze the effect of intramolecular interactions on the structural behavior of the GG/CC and AA/TT steps. These steps exemplify sequence specific bias to the B- or A-form structure. Optimization of potential energy of the molecular systems composed of an octanucle-otide, neutralized by Na(+) and solvated with TIP3P water molecules in rectangular box with periodic boundary conditions gives the statistically representative sets of low energy structures for GG/CC and AA/TT steps in the middle of the diverse flanking sequences. Permissible 3D variations of GG/CC and AA/TT, and correlation of the relative motion of base pairs in these steps were analyzed. AA/TT step permits high variability for low energy conformers in the B-form DNA and small variability for low energy conformers in the A-form DNA. In contrast GG/CC step permits high variability for low energy conformers in the A-form DNA and small variability for low energy conformers in the B-form DNA. The relative motion of base pairs in GG/CC step is high correlated, while in AA/TT step this correlation is notably less. Atom-atom interactions inside-the-step always favors the B-form and their component - stacking interactions (atomatom interactions between nucleic bases) is crucial for the duplex stabilization. Formation of the A-form for both steps is a result of interactions with the flanking sequences and water-cation environment in the box. The average energy difference between conformations presenting B-form and A-form for the GG/CC step is high, while for the AA/TT step it is rather low. Thus, intramolecular interactions in GG/CC and AA/TT steps affect the possible conformational diversity ("conformational entropy") of the A- and B- type structures of DNA step. This determines the known bias of the A-form DNA depending on the enrichment of sequences with GG/CC. If structural tuning during the process of protein-DNA complex formation lead to the local B→A transformation of DNA, it is largely directed by high conformational diversity of GG/CC step in the A-form. In such a case the presence in the target site of both kinds of examined steps ensures the reversible character of ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号