首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anurans hold a unique position in vertebrate phylogeny, as they made the major transition from water to land. Through evolution they have acquired fundamental mechanisms to adapt to terrestrial gravity. Such mechanisms are now shared among other terrestrial vertebrates derived from ancestral amphibians. Space research, using amphibians as a model animal, is significant based on the following aspects: (1) Anuran amphibians show drastic changes in their living niche during their metamorphosis. Environments for tadpoles and for terrestrial life of frogs are quite different in terms of gravity and its associated factors. (2) Certain tadpoles, such as Rhacophorus viridis amamiensis, have a transparent abdominal wall. Thus visceral organs and their motion can be observed in these animals in non-invasive manner through their transparent abdominal skin. This feature enables biologists to evaluate the physiological state of these amphibians and study the autonomic control of visceral organs. It is also feasible for space biologists to examine how such autonomic regulation could be altered by microgravity and exposure to the space environment.  相似文献   

2.
Metamorphosis of the amphibian eye   总被引:1,自引:0,他引:1  
For many metamorphosing amphibians, the visual system must remain functional as the animal changes from an aquatic to a terrestrial habitat. Thyroid hormone, the trigger for metamorphosis, brings about changes at all levels of the animal, and profoundly alters the visual system, from cellular changes within the eye to new central connections subserving the binocular vision that develops during metamorphosis in some species. I will survey the alterations in the visual system in the metamorphosis of several Amphibian groups, and consider the role of thyroid hormone in bringing about these transformations through action at the molecular level.  相似文献   

3.
Live‐bearing has evolved in all three orders of amphibians—frogs, salamanders, and caecilians. Developing young may be either yolk dependent, or maternal nutrients may be supplied after yolk is resorbed, depending on the species. Among frogs, embryos in two distantly related lineages develop in the skin of the maternal parents' backs; they are born either as advanced larvae or fully metamorphosed froglets, depending on the species. In other frogs, and in salamanders and caecilians, viviparity is intraoviductal; one lineage of salamanders includes species that are yolk dependent and born either as larvae or metamorphs, or that practice cannibalism and are born as metamorphs. Live‐bearing caecilians all, so far as is known, exhaust yolk before hatching and mothers provide nutrients during the rest of the relatively long gestation period. The developing young that have maternal nutrition have a number of heterochronic changes, such as precocious development of the feeding apparatus and the gut. Furthermore, several of the fetal adaptations, such as a specialized dentition and a prolonged metamorphosis, are homoplasious and present in members of two or all three of the amphibian orders. At the same time, we know little about the developmental and functional bases for fetal adaptations, and less about the factors that drive their evolution and facilitate their maintenance. J. Morphol. 276:941–960, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Morphological, histological, ultrastructural, and developmental research on the adrenal gland of several species of anurans and urodeles belonging to different families is presented. Urodeles show a large variability in adrenal glandular structure without a clear taxonomic pattern, although increased compactness of the gland and mingling of steroidogenic and chromaffin cells are found only in some neourodeles. In anurans the glandular pattern may be divided into two subtypes: one more medial and diffuse, which is observed in frogs of the more primitive families; the other more lateral and aggregated, as seen in the more advanced families. The adrenal gland therefore increases in its compactness and aggregation of chromaffin and steroidogenic tissues in the transition from primitive to advanced families, both in urodeles and anurans. Until the end of metamorphosis, morphogenesis of the gland is similar in all amphibians studied. This process is extended after metamorphosis in the advanced anurans, in order that the gland may reach its definitive position.  相似文献   

5.
Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.  相似文献   

6.
Metamorphosis displays a striking diversity in chordates, a deuterostome phylum that comprises vertebrates, urochordates (tunicates), and cephalochordates (amphioxus). In anuran amphibians, the tadpole loses its tail, develops limbs, and undergoes profound changes at the behavioral, physiological, biochemical, and ecological levels. In ascidian tunicates, the tail is lost and the head tissues are drastically remodeled into the adult animal, whereas in amphioxus, the highly asymmetric larva transforms into a relatively symmetric adult. This wide diversity has led to the proposal that metamorphosis evolved several times independently in the different chordate lineages during evolution. However, the molecular mechanisms involved in metamorphosis are largely unknown outside amphibians and teleost fishes, in which metamorphosis is regulated by the thyroid hormones (TH) T3 and T4 binding to their receptors (thyroid hormone receptors). In this review, we compare metamorphosis in chordates and then propose a unifying definition of the larva-to-adult transition, based on the conservation of the role of THs and some of their derivatives as the main regulators of metamorphosis. According to this definition, all chordates (if not, all deuterostomes) have a homologous metamorphosis stage during their postembryonic development. The intensity and the nature of the morphological remodeling varies extensively among taxa, from drastic remodeling like in some ascidians or amphibians to more subtle events, as in mammals.  相似文献   

7.
Organisms often respond to environmental change via phenotypic plasticity, in which an individual modulates its phenotype according to the environment. Highly variable or changing environments can exceed physiological limits and generate maladapted plastic phenotypes, which is termed nonadaptive plasticity. In some cases, selection may reduce the negative or disruptive impacts of environmental stress and produce locally adapted populations. Salt is an increasingly prevalent contaminant of freshwater systems and can induce nonadaptive plastic phenotypes for freshwater organisms like amphibians. Hyla cinerea is a frog species with populations inhabiting brackish, coastal habitats, so we use this species to test whether coastal populations are locally adapted to tolerate saltwater by determining how salt exposure during the embryonic and larval stages alters mortality and plastic developmental and metamorphic phenotypes of coastal and inland populations. Coastal frogs have higher survival, faster growth rates, and metamorphose sooner than inland frogs across salinities. Coastal frogs also metamorphose smaller (likely a consequence of earlier metamorphosis) yet maintain constant size, while higher salinities reduce metamorphic size for inland frogs. Coastal frogs evolved to minimize nonadaptive and disruptive impacts of saltwater during larval development and accelerate the larval period to reduce time spent in a stressful environment.  相似文献   

8.
Rick A. Relyea 《Oecologia》2009,159(2):363-376
The ubiquity of anthropogenic chemicals in nature poses a challenge to understanding how ecological communities are impacted by them. While we are rapidly gaining an understanding of how individual contaminants affect communities, communities are exposed to suites of contaminants yet investigations of the effects of diverse contaminant mixtures in aquatic communities are rare. I examined how a single application of five insecticides (malathion, carbaryl, chlorpyrifos, diazinon, and endosulfan) and five herbicides (glyphosate, atrazine, acetochlor, metolachlor, and 2,4-D) at low concentrations (2–16 p.p.b.) affected aquatic communities composed of zooplankton, phytoplankton, periphyton, and larval amphibians (gray tree frogs, Hyla versicolor, and leopard frogs, Rana pipiens). Using outdoor mesocosms, I examined each pesticide alone, a mix of insecticides, a mix of herbicides, and a mix of all ten pesticides. Individual pesticides had a wide range of direct and indirect effects on all trophic groups. For some taxa (i.e., zooplankton and algae), the impact of pesticide mixtures could largely be predicted from the impacts of individual pesticides; for other taxa (i.e., amphibians) it could not. For amphibians, there was an apparent direct toxic effect of endosulfan that caused 84% mortality of leopard frogs and an indirect effect induced by diazinon that caused 24% mortality of leopard frogs. When pesticides were combined, the mix of herbicides had no negative effects on the survival and metamorphosis of amphibians, but the mix of insecticides and the mix of all ten pesticides eliminated 99% of leopard frogs. Interestingly, these mixtures did not cause mortality in the gray tree frogs and, as a result, the gray tree frogs grew nearly twice as large due to reduced competition with leopard frogs. In short, wetland communities can be dramatically impacted by low concentrations of pesticides (both separate and combined) and these results offer important insights for the conservation of wetland communities.  相似文献   

9.
In the current study, 5-nydroxytryptamine(5-HT) and gastrin(GAS) cells in the digestive canals of Rana chensinensis tadpoles at different developmental stages were investigated by immunohistochemistry. Results showed that the 5-HT cells were only detected in the duodenum before metamorphosis began, and were extensively distributed in the stomach, duodenum, small intestine, and rectum thereafter, with the highest counts found in the duodenum and rectum when metamorphosis was completed. The GAS cells were only distributed in the stomach and duodenum, and only rarely detected in the duodenum before metamorphosis began, but increased in the stomach during metamorphosis and showed zonal distribution in the gastric mucosa when metamorphosis was completed. Metamorphosis is a critical period for amphibians, during which structural and functional physiological adaptations are required to transition from aquatic to terrestrial environments. During metamorphosis, the differentiations of 5-HT cells in the gastrointestinal canals of tadpoles could facilitate mucus secretion regulation, improve digestive canal lubrication, and help watershortage food digestion in terrestrial environments. Conversely, GAS cell differentiations during metamorphosis might contribute to the digestive and absorptive function transition from herbivore to omnivore.  相似文献   

10.
Anuran amphibians, animals that spend a terrestrial life after metamorphosis, exhibit a marked development of hindlimbs during and after metamorphosis. In order to see whether changes occur in the muscle protein components in the course of postmetamorphic development, we subjected gastrocnemius muscle extracts from growing froglets to two-dimensional electrophoresis (2DE). As a result, we found two proteins to undergo a change in level. One spot, indicating a molecular mass of approximately 12 kDa and an isoelectric point (pI) of 5.0 first became detectable at 45 days after metamorphosis. Another spot, corresponding to a protein of 11 kDa and pI 4.8, was prominent until the former spot appeared. N-terminal amino acid sequence analysis and comparison of the spots with those of parvalbumin (PA) revealed that these two proteins were PA alpha and PA beta. Northern blot analysis using PA alpha and PA beta cDNAs as probes revealed that the PA beta mRNA level declined whereas that of PA alpha mRNA rose as the frogs grew.  相似文献   

11.
It has been shown that larval skin (LS) grafts are rejected by an inbred strain of adult Xenopus, which suggests a mechanism of metamorphosis by which larval cells are recognized and attacked by the newly differentiating immune system, including T lymphocytes. In an attempt to define the larval antigenic molecules that are targeted by the adult immune system, anti-LS antibodies (IgY) were produced by immunizing adult frogs with syngeneic LS grafts. The antigen molecules that reacted specifically with this anti-LS antiserum were localized only in the larval epidermal cells. Of 53 and 59-60 kDa acidic proteins that were reactive with anti-LS antibodies, a protein of 59 kDa and with an isoelectric point of 4.5 was selected for determination of a 19 amino acid sequence (larval peptide). The rat antiserum raised against this peptide was specifically reactive with the 59 kDa molecules of LS lysates. Immunofluorescence studies using these antisera revealed that the larval-specific molecules were localized in both the tail and trunk epidermis of premetamorphic larvae, but were reduced in the trunk regions during metamorphosis, and at the climax stage of metamorphosis were detected only in the regressing tail epidermis. Culture of splenocytes from LS-immunized adult frogs in the presence of larval peptide induced augmented proliferative responses. Cultures of larval tail pieces in T cell-enriched splenocytes from normal frogs or in natural killer (NK)-cell-enriched splenocytes from early thymectomized frogs both resulted in significant destruction of tail pieces. Tissue destruction in the latter was enhanced when anti-LS antiserum was added to the culture. These results indicate that degeneration of tail tissues during metamorphosis is induced by a mechanism such that the larval-specific antigen molecules expressed in the tail epidermis are recognized as foreign by the newly developing adult immune system, and destroyed by cytotoxic T lymphocytes and/or NK cells.  相似文献   

12.
While many morphological, physiological, and ecological characteristics of organisms scale with body size, some do not change under size transformation. They are called invariant. A recent study recommended five criteria for identifying invariant traits. These are based on that a trait exhibits a unimodal central tendency and varies over a limited range with body mass (type I), or that it does not vary systematically with body mass (type II). We methodologically improved these criteria and then applied them to life history traits of amphibians, Anura, Caudata (eleven traits), and reptiles (eight traits). The numbers of invariant traits identified by criteria differed across amphibian orders and between amphibians and reptiles. Reproductive output (maximum number of reproductive events per year), incubation time, length of larval period, and metamorphosis size were type I and II invariant across amphibians. In both amphibian orders, reproductive output and metamorphosis size were type I and II invariant. In Anura, incubation time and length of larval period and in Caudata, incubation time were further type II invariant. In reptiles, however, only number of clutches per year was invariant (type II). All these differences could reflect that in reptiles body size and in amphibians, Anura, and Caudata metamorphosis (neotenic species go not through it) and the trend toward independence of egg and larval development from water additionally constrained life history evolution. We further demonstrate that all invariance criteria worked for amphibian and reptilian life history traits, although we corroborated some known and identified new limitations to their application.  相似文献   

13.
Metamorphosis in frogs is a critical developmental process through which a tadpole changes into an adult froglet. Metamorphic changes include external morphological transformations as well as important changes in the wiring of sensory organs and central nervous system. This review aims to provide an overview on the events that occur in the visual system of metamorphosing amphibians and to discuss recent studies that provide new insight into the molecular mechanisms that control changes in the retinal growth pattern as well as the formation of new axonal pathways in the central nervous system. BioEssays 23:319-326, 2001.  相似文献   

14.
We investigated associations between genetic variability and two fitness-related traits--size and age at metamorphosis--in two subartic populations of the common frog, Rana temporaria. We found that metamorphic size was positively correlated with individual heterozygosity (as estimated using eight microsatellite loci) and that maternal heterozygosity also explained a significant amount of variation in this trait. In contrast, age at metamorphosis was only explained by environmental factors. Since size at metamorphosis is positively correlated with fitness in amphibians, these results suggest that genetic variability may be an important component of individual fitness in common frogs. The environmental variation underlying timing of metamorphosis may indicate that strong selection pressure on this trait in the Nordic environment is likely to override genetic effects.  相似文献   

15.
16.
广西弄岗国家级自然保护区两栖爬行动物资源调查   总被引:5,自引:1,他引:4  
2006年5~8月,2010年3~5月、7~9月,对广西弄岗国家级自然保护区两栖爬行动物资源进行了实地调查。结果显示,该保护区现已知两栖爬行动物88种,隶属3目19科57属。其中,两栖动物27种,爬行动物61种。区系组成以86种东洋界种类占明显优势,其余2种为广布种,无古北界物种分布。初步分析了两栖动物对喀斯特地区季节性缺水环境的适应。  相似文献   

17.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

18.
Developmental energetics are crucial to a species' life history and ecology but are poorly understood from a mechanistic perspective. Traditional energy and mass budgeting does not distinguish between costs of growth and maturation, making it difficult to account for accelerated development. We apply a metabolic theory that uniquely considers maturation costs (Dynamic Energy Budget theory, DEB) to interpret empirical data on the energetics of accelerated development in amphibians. We measured energy use until metamorphosis in two related frogs, Crinia georgiana and Pseudophryne bibronii. Mass and energy content of fresh ova were comparable between the species. However, development to metamorphosis was 1.7 times faster in C. georgiana while P. bibronii produced nine times the dry biomass at metamorphosis and had lower mass-specific oxygen requirements. DEB theory explained these patterns through differences in ontogenetic energy allocation to maturation. P. bibronii partitioned energy in the same (constant) way throughout development whereas C. georgiana increased the fraction of energy allocated to maturation over growth between hatching and the onset of feeding. DEB parameter estimation for additional, direct-developing taxa suggests that a change in energy allocation during development may result from a selective pressure to increase development rate, and not as a result of development mode.  相似文献   

19.
Abstract: Questions in population ecology require the study of marked animals, and marks are assumed to be permanent and not overlooked by observers. I evaluated retention through metamorphosis of visual implant elastomer marks in larval salamanders and frogs and assessed error in observer identification of these marks. I found 1) individual marks were not retained in larval wood frogs (Rana sylvatica), whereas only small marks were likely to be retained in larval salamanders (Eurycea bislineata), and 2) observers did not always correctly identify marked animals. Evaluating the assumptions of marking protocols is important in the design phase of a study so that correct inference can be made about the population processes of interest. This guidance should be generally useful to the design of mark-recapture studies, with particular application to studies of larval amphibians.  相似文献   

20.
Maturation of vertebrate neuromuscular systems typically occurs in a continuous, orderly progression. After an initial period of developmental adjustment by means of cell death and axonal pruning, relatively stable relationships, with only subtle modifications, are maintained between motoneurons and their appropriate targets throughout life. However, among a restricted group of vertebrates (amphibians and especially the anuran amphibians) the sequential maturation of neuromuscular systems is altered by an abrupt reordering of the basic body plan that encompasses cellular changes in all tissues from skeleton to nervous system. Many anuran amphibians possess neuromuscular circuits that are remarkable by virtue of their complete reorganization during the brief span of metamorphosis. During this period motor systems initially designed for the behavioral patterns of aquatic tadpoles are adjusted to meet the drastically different motor activities of postmetamorphic terrestrial life. This adjustment involves the deletion of neural elements mediating larval specific activities, the accelerated maturation of neural circuits eliciting adult-specific activities and the retrofitting of larval neuromuscular components to serve postmetamorphic behaviors. This review focuses on the cellular events associated with the neuromuscular adaptation in the jaw complex during metamorphosis of the leopard frog, Rana pipiens. As part of the metamorphic reorganization of the jaw apparatus there is a complete turnover of the myofiber complement of the adductor mandibulae musculature. Trigeminal motoneurons initially deployed to the larval myofibers are redirected to new muscle fibers. Simultaneously the cellular geometry and synaptic input to these motoneurons is revamped. These changes suggest that trigeminal neuromuscular circuitry established during embryogenesis is updated during metamorphosis and reused to provide the basis for adult jaw motor activity that is far different than its larval counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号