首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated trout testis nuclei rapidly incorporate [alpha-32P]NAD+ into chromosomal proteins. Three proteins, very-lysine-rich histone (H1), a specific trout chromosomal protein (H6) and the sperm-specific protamines, incorporate the label as adenosine diphosphoribosyl (ADP-Rib) residues. No significant labeling of the nucleosomal 'core' histones H2A, H2B, H3 and H4 was observed. The linkage of the [32P](ADP-Rib) residues to each protein was very labile at pH values greater than 7.0 but by working at acidic pH and low temperatures the ADP-Rib label could be shown to be covalently bound to protein by gel electrophoresis and ion-exchange chromatography. The [32P]ADP-Rib chains could be removed by digestion with snake venom phosphodiesterase with the formation of AMP and phosphoribosyl-AMP.  相似文献   

2.
The stereochemical course of hydrolysis catalyzed by the cyclic GMP phosphodiesterase from bovine retinal rod outer segments was determined. The Sp diastereomer of guanosine 3',5'-cyclic monophosphorothioate was hydrolyzed by cyclic GMP phosphodiesterase in H2(18)O to give [16O,18O]guanosine 5'-monophosphorothioate. This isotopomer was reacted with diphenyl phosphorochloridate to form the two diastereomers of P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate. The 31P NMR spectrum of this mixture of diastereomers was identical to that obtained from [16O,18O]guanosine 5'-monophosphorothioate resulting from the hydrolysis of the Rp diastereomer of guanosine 5'-p-nitrophenyl phosphorothioate by snake venom phosphodiesterase. This finding indicates that the 18O is bridging in the Rp diastereomer of the P1-(5'-guanosyl) P2-(diphenyl) 1-thiodiphosphate and nonbridging in the Sp diastereomer. As the snake venom phosphodiesterase reaction is known to proceed with retention of configuration, it follows that hydrolysis by retinal rod cyclic GMP phosphodiesterase proceeds with inversion of configuration at the phosphorus atom.  相似文献   

3.
M Wong  M Smulson 《Biochemistry》1984,23(16):3726-3730
In the accompanying paper [Malik, N., & Smulson, M. (1984) Biochemistry (preceding paper in this issue)], we report that certain acetylated domains of chromatin were selectively retained by an anti-poly(ADP-Rib) antibody column. In this paper, we describe investigations of this phenomenon at the molecular level of protein interactions. We observed that the majority of endogenously hyperacetylated histones have a high affinity toward the polymer antibody column. It is speculated that these proteins were bound to the column via endogenous poly(adenosine diphosphate ribose) [poly(ADP-Rib)] since the binding was reversed upon treatment of the histones with alkali prior to immunofractionation. In order to analyze the distribution of acetate and poly(ADP-Rib) on histone proteins, [3H]acetylated nuclei were incubated in vitro with [32P]NAD. Acetate was incorporated mainly into H3 and H4 while H1 was the major acceptor protein for poly(ADP-Rib). These results suggest that a correlation may exist in vivo between the two posttranslational modification processes and that identical histone molecules may be accessible to both modifications.  相似文献   

4.
Specific antibody against 2'-(5"-phosphoribosyl)-5'AMP (PR-AMP), a monomer of poly(adenosine diphosphate ribose) (poly(ADP-Rib)), was produced by immunizing a rabbit with PR-AMP coupled to bovine serum albumin (BSA). Antibody against PR-AMP was purified 53-fold from serum by (NH4) 2SO4 precipitation, and BSA-Sepharose 4B, DEAE-cellulose and (PR-AMP)-BSA-Sepharose 4B column chromatographies. Inhibition experiments show that the adenine ring, 5'-phosphate residue and ribose-ribose bond of PR-AMP were essential for the antigenic determinant of PR-AMP. Anti PR-AMP antibody bound, not only with PR-AMP, but also with poly(ADP-Rib) of various chain lengths, while anti poly(ADP-Rib) antibody bound with poly(ADP-Rib) but not with PR-AMP.  相似文献   

5.
H Okazaki  C Niedergang  P Mandel 《Biochimie》1980,62(2-3):147-157
The mechanism of poly ADPR synthesis and the transfer of poly ADPR to histone H1 molecule by electrophoretically homogenous calf thymus poly ADPR polymerase containing DNA was examined. 1) An acid insoluble radioactive complex (I) was obtained after incubation of purified enzyme with [3H] NAD. The stability of (I) was examined by SDS-polyacrylamide gel electrophoresis. The complex (I) was stable against acid, SDS, urea, DNase and RNase, but labile against pronase, trypsin, alkali and snake venom phosphodiesterase treatment. The molecular weight of (I) was about 130 000 daltons estimated by SDS-gel electrophoresis. The radioactive products of successive alkali, venom phosphodiesterase and Pronase hydrolysis of (I) were PR-AMP and AMP. The mean chain length of poly ADPR of (I) was 20--30. These results suggest that the complex (I) is poly ADP-ribosylated poly ADPR polymerase. 2) Besides (I), a second radioactive peak (II) was observed when acid insoluble products obtained from an incubation mixture containing purified poly ADPR polymerase, [3H] NAD and purified histone H1 were analyzed on SDS-polyacrylamide gel electrophoresis. The molecular weight of (II) was estimated to be about 23 000 daltons. The complex (II) is eluted like histone H1 on CM-cellulose columns and hydrolyzed by alkali, trypsin and snake venom phosphodiesterase but not by DNase, or RNase. The comples (II) was extracted selectively by 5 per cent perchloric acid or 5 per cent trichloroacetic acid from mixture of (I) and (II). The mean chain length of poly ADPR of complex (II) and 5--20; these results suggest that the complex (II) is poly ADP-ribosylated histone H1. 3) Results 1) and 2) indicate that purified DNA containing, thus DNA independent, poly ADPR polymerase catalyzes two different reactions, the ADPR transfer onto the enzyme itself and onto histone H1 and the elongation of ADPR chains. Dimeric forms of ADP-ribosylated histone H1 was not observed. Free poly ADPR was observed only when very small quantities of enzyme were used for incubation.  相似文献   

6.
K C Tsou  K F Yip 《Life sciences》1973,13(11):1505-1509
The nucleoside phosphoramidate thymidine-5′-phospho-α-naphthylamidate and thymidine-3′-phospho-α-naphthylamidate were prepared as fluorogenic substrates for the study of enzymatic hydrolysis of the PN bond. With these new substrates, the rate and specificity of hydrolysis of the PN bond of the nucleoside phosphoramidate by snake venom and spleen phosphodiesterase could be studied. It was found that the 5′-phosphoramidate was hydrolyzed by snake venom phosphodiesterase and the 3′-phosphoramidate was hydrolyzed only by the spleen phosphodiesterase. Thus, the specificity requirement for PN bond cleavage is similar to that of the P0 bond cleavage, even though the rate is much slower.  相似文献   

7.
8.
We have studied the synthesis of poly(ADP-ribose) by nuclei isolated from Xenopuslaevis embryos at different stages of development. Determination of the total chain length of poly(ADP-ribose) molecules by hydroxylapatite column chromatography generally gave higher values than when the radioactive portions of these molecules, synthesized invitro, were measured by poly(ethyleneimine)-cellulose thin layer chromatography, after snake venom phosphodiesterase digestion. The results show that most of the poly(ADP-ribose) synthesized invitro is a covalent elongation of molecules previously initiated invivo.  相似文献   

9.
Initiation of poly(ADP-ribosyl) histone synthesis was achieved in vitro using an apparently homogeneous preparation of poly(ADP-ribose) synthetase. When poly(ADP-ribose) was synthesized in the presence of DNA and increase amounts of histone H1, increasing portions (up to about 55%) of the product were found associated with the histone, judging from solubility in 5% HClO4 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Most of the polymers were directly attached to the histone protein and not produced by elongation from pre-existing ADP-ribose; the cohesive end of poly(ADP-ribose), isolated as ribose 5-phosphate with snake venom phosphodiesterase digestion, was labeled almost quantitatively with [ribose (NMN)-14C]NAD. The poly(ADP-ribose) . histone linkage was labile in mild alkali and neutral NH2OH, suggesting that the same bond, probably ester, was formed in this system as in crude chromatin or isolated nuclei. Elongation of a histone-bound monomer into a polymer by this enzyme was previously demonstrated (Ueda, K., Kawaichi, M., Okayama, H., and Hayaishi, O. (1979) J. Biol. Chem. 254, 679-687), but initiation of ADP-ribose chains on histone has never been shown with a purified enzyme. This appeared to be due to the low concentrations of histone so far used. These findings indicated that a single enzyme catalyzes two different types of reaction, i.e. an attachment of ADP-ribose to histone and its elongation into a polymer.  相似文献   

10.
The phosphodiesterase from snake venom catalyzes the hydrolysis of the Rp diastereomer of thymidine 5'-(4-nitrophenyl [17O,18O]phosphate) in H216O with retention of configuration at phosphorus. This result is in agreement with those previously reported for the hydrolysis of chiral phosphorothioate substrates (Bryant, F. R., and Benkovic, S. J. (1979) Biochemistry 18, 2825-2828; Burgers, P. M. J., Eckstein, F., and Hunneman, D. H. (1979) J. Biol. Chem. 254, 7476-7478). The hydrolysis reaction catalyzed by this enzyme occurs via formation of a covalent nucleotidylated enzyme intermediate.  相似文献   

11.
RNA polymerase of Escherichia coli was allowed to bind to labeled T4 or T7 bacteriophage DNA. The unbound and “weakly” bound polymerase molecules were removed by adding an excess of poly(I) which has a high affinity for the enzyme (Bautz et al., 1972). After the unbound DNA regions were digested with pancreatic DNAase and snake venom phosphodiesterase, the “protected” DNA-RNA polymerase complexes were isolated by Sephadex G200 column chromatography. The protected DNA sites were then isolated by phenol extraction and hydroxylapatite chromatography. Studies of the DNA recognition regions led to the following conclusions. (1) No binding is observed in the absence of the sigma subunit or at low temperatures. (2) The amount of protection ranges from 0·18% to 0·24% of T4 DNA and from 0·25% to 0·34% of T7 DNA. In the absence of poly(I), higher protections are observed and the protected regions display heterogeneity in size and secondary structure. (3) The protected regions are double-stranded, as shown by hydroxylapatite chromatography, base composition analysis, and thermal chromatography. (4) The length of the protected regions comprise about 50 to 55 nucleotide pairs, as suggested by end-group analysis, sucrose density-gradient centrifugation, and polyacrylamide gel electrophoresis. (5) The results suggest the interaction of dimeric polymerase molecules at these sites. On the basis of DNA sizes, there are 7 to 9 such sites on T4 DNA and 2 to 3 on T7 DNA. (6) The protected regions are high in (A + T): 68% for T4 and 62% for T7 DNA. (7) Thermal chromatograms reflect these base compositions and suggest the homogeneity of these regions with respect to size and base composition.  相似文献   

12.
Chemical methods for the synthesis of short deoxyribooligonucleotides containing methyl and phenylphosphonodiester linkages have been developed. The interaction of two such nonionic dinucleotide analogs, T(pCH3)T and T(pC6H5)T, with several enzymes has been investigated. Because of the phosphonate linkage each dinucleotide exists as a diastereomeric pair as shown by thin layer chromatography and enzymatic studies. Both isomers of each dinucleotide can be phosphorylated by T4-polynucleotide kinase in the presence of [gamma-32P]ATP. Only one of the diastereoisomers of each dinucleotide is slowly hydrolyzed by snake venom phosphodiesterase and acts as an inhibitor of the enzyme-catalyzed hydrolysis of 5'-labeled oligothymidylic acid. Both isomers of each dinucleotide analog are completely resistant to hydrolysis by spleen phosphodiesterase.  相似文献   

13.
Rates of poly (ADP-R) formation from NAD+ were determined in isolated pigeon heart and liver nuclei. In heart nuclei Km for NAD+ was 330 μM. On a DNA basis rates were more than twice in heart nuclei than in liver nuclei. The polymer poly (ADP-R) was identified in both nuclear systems by isolation, digestion with snake venom phosphodiesterase and chromatographic separation of phosphoribosyl-AMP and AMP. ADP-R binds to macromolecular nuclear components to form ADP-R derivatives, which upon digestion with snake venom phosphodiesterase yield only AMP, distinguishing these ADP-R compounds from poly (ADP-R).  相似文献   

14.
Partial depurination of d-ApA produced two UV260nm-absorbing isomers, d-SpA and d-ApS (where S represents the depurinated deoxyribose sugar), that provided simple model compounds with which to examine, by HPLC, the response of nucleases to phosphodiester bonds flanked 3' or 5' by an apurinic site. The structural identity of each compound was established by (i) reaction with methoxyamine to confirm the presence of an abasic deoxyribose group, and (ii) degradation of d-SpA under mild alkaline conditions to distinguish it from d-ApS. At an enzyme concentration which led to complete hydrolysis of d-ApA, snake venom phosphodiesterase readily cleaved d-SpA to 5'-dAMP but had no discernible effect on d-ApS. Calf spleen phosphodiesterase also failed to act on one isomer, in this instance d-SpA, but additionally reacted at a much slower rate (approximately 100 fold) with d-ApS than with d-ApA. Three single-strand specific endonucleases, nuclease P1, nuclease S1 and mung bean nuclease, all responded in an identical manner, hydrolysing d-ApS but not d-SpA. The possibility that the aldehyde group at the AP sites might be responsible for some of these observations was rejected after repeating the enzyme digestions with the methoxyamine-capped molecules and observing no differences from the reactions with d-SpA and d-ApS.  相似文献   

15.
The reaction mechanism of automodification of poly (ADP-ribose) synthetase was studied. The synthetase, bound to nicked DNA-cellulose in a small column, was pulse-labelled with [3H]NAD in the presence of Mg2+, and then chased with [14C]NAD under the same conditions after complete washing of [3H]NAD. The poly(ADP-ribose), synthesized on the synthetase molecule, was digested with snake venom phosphodiesterase and analyzed. The [3H]-labeled product (35% of the total product) was identified as isoADP-ribose but [3H]-labelled AMP was not detected. The average chain length was 16.0 and the terminal AMP was detected as [14C]-labelled AMP. These results indicate that the initially attached ADP-ribose unit at an automodification site was successively elongated by the addition of a new ADP-ribose unit to the terminal AMP moiety.  相似文献   

16.
When nucleosomal core histones were isolated from rat liver nuclei incubated with [14C]NAD+ and fractionated into the individual components (H2A, H2B, H3, and H4), [14C]adenosine diphosphate ribose (ADP-Rib) was found to be associated with all of them. However, while about 15% of the H2B molecules were modified, less than 2% of the other fractions contained radioactive ADP-Rib. The nucleotide attached to H2B was identified as a single monomer of ADP-Rib. On subjectint H2B to electrophoresis in polyacrylamide gels containing 2.5 M urea and 0.9 N acetic acid, one single band of H2B with 5% less mobility than the unomdified control was obtained. The linkage between H2B and ADP-Rib was rapidly hydrolyzed with 0.1 N NaOH or with 1 M neutral hydroxylamine. Hydrolysis of ADP-ribosylated H2B with trypsin generated a single peptide linked to ADP-Rib, which corresponded to the sequence Pro-Glu-Pro-Ala-Lys. We were able to dansylate the NH2-terminal proline, which proved that the imino group of this amino acid was not substituted. These findings, together with the chemical properties of the linkage, which were typical of those of an ester-like bond, strongly suggest that the ADP-Rib residue was linked to the gamma-COOH group of the glutamic acid in position 2 of H2B.  相似文献   

17.
F R Bryant  S J Benkovic 《Biochemistry》1979,18(13):2825-2828
The hydrolysis reaction of ATP alpha S by snake venom phosphodiesterase is highly specific for the B diastereomer and proceeds with 88% retention of configuration at phosphorus. Since this enzyme also catalyzes the hydrolysis of the S enantimoer of O-p-nitrophenyl phenylphosphonothioate, the absolute configuration at A alpha of ATP alpha S (B) is assigned as the R configuration provided the two substrates are processed identically. A mechanism for the hydrolysis reactions catalzyed by the venom phosphodiesterase involving at least a single covalent phosphoryl-enzyme intermediate is in accord with this result.  相似文献   

18.
[18O]Adenosine 5'-O-phosphorothioate-O-p-nitrophenyl ester was prepared by saponification of the bis (-O,O-p-nitrophenyl ester) with K18OH. Only the diastereoisomer with the Rp configuration si a substrate for snake venom phosphodiesterase. The asymmetrically labeled [18O]adenosine 5'-O-phosphorothioate formed in this reaction was converted enzymatically to [18O]adenosine 5'-(1-thiodiphosphate) with the Sp configuration. The position of the 18O label, either bridging [1,2-mu-18O] or nonbridging [1-18O] was then determined. The results show that the reaction catalyzed by snake venom phosphodiesterase takes place with retention of configuration at phosphorus. This indicates that the hydrolysis proceeds via a covalent nucleotide enzyme intermediate.  相似文献   

19.
Protein kinase activity was associated with chromatin in wheat ( Triticum aestivum L. cv. Mukakomugi) embryos. The kinase activity did not change significantly during germination, whereas the activity of poly (ADP-ribose) synthetase decreased significantly. The protein kinase activity in chromatin was inhibited by NAD, NADH, and ADP-ribose, and was enhanced by treatment of the chromatin with snake venom phosphodiesterase or soybean trypsin inhibitor. The activity in chromatin was not stimulated by cyclic AMP. Different subfractions of the histones, H1 and H2, were mainly phosphorylated in germ and 3 day-germinated seedling chromatins. The histones, H3 and H4, seemed unable to accept phosphate from ATP in the in vitro reaction system. Different acidic non-histone chromosomal proteins were phosphorylated in germ and 3-day-germinated seedling chromations, and germ-specific and seedling-specific acidic non-histone chromosomal proteins seemed unable to accept phosphate from ATP.  相似文献   

20.
All studied origins of replication of DNA in Saccharomyces cerevisiae contain DNA unwinding elements. The introduction of unrestrained negative supercoiling leads to melting of the two DNA strands in DNA unwinding elements. To understand the mechanism of DNA replication it is important to know whether the most unstable region of DNA coincides with the origin of replication. Two-micrometer plasmid DNA from S. cerevisiae inserted in pBR322 was investigated by cleaving with snake venom phosphodiesterase. Its single-strand endonucleolytic activity allows cutting of negatively supercoiled DNA in the DNA unwinding elements. The sites of the venom phosphodiesterase hydrolysis were mapped by restriction enzymes. This study shows that the unwinding of the two-micrometers plasmid DNA of S. cerevisiae takes place only in the origin of replication as a result of unrestrained negative supercoiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号