首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
rab5 controls early endosome fusion in vitro   总被引:110,自引:0,他引:110  
J P Gorvel  P Chavrier  M Zerial  J Gruenberg 《Cell》1991,64(5):915-925
The small GTP-binding protein rab5 was previously localized on early endosomes and on the cytoplasmic face of the plasma membrane. Using a cell-free assay, we have now tested whether rab5 is involved in controlling an early endocytic fusion event. Fusion could be inhibited by cytosol containing the overexpressed mutant rab5lle133, which does not bind GTP on blots, and by antibodies against rab5, but not against rab2 or rab7. In contrast, fusion was stimulated with cytosol containing overexpressed wild-type rab5. Cytosols containing high levels of rab2 or mutant rab5 with the 9 carboxy-terminal amino acids deleted, which bind GTP on blots, had no effects. Finally, the inhibition mediated by anti-rab5 antibodies could be overcome by complementing the assay with the cytosol containing wild-type rab5, but not with the same cytosol depleted of rab5, nor with cytosol containing the rab5 mutants or rab2. These in vitro findings strongly suggest that rab5 is involved in the process of early endosome fusion.  相似文献   

2.
We investigated the intracellular route of Salmonella in macrophages to determine a plausible mechanism for their survival in phagocytes. Western blot analysis of isolated phagosomes using specific antibodies revealed that by 5 min after internalization dead Salmonella-containing phagosomes acquire transferrin receptors (a marker for early endosomes), whereas by 30 min the dead bacteria are found in vesicles carrying the late endosomal markers cation-dependent mannose 6-phosphate receptors, Rab7 and Rab9. In contrast, live Salmonella-containing phagosomes (LSP) retain a significant amount of Rab5 and transferrin receptor until 30 min, selectively deplete Rab7 and Rab9, and never acquire mannose 6-phosphate receptors even 90 min after internalization. Retention of Rab5 and Rab18 and selective depletion of Rab7 and Rab9 presumably enable the LSP to avoid transport to lysosomes through late endosomes. The presence of immature cathepsin D (48 kDa) and selective depletion of the vacuolar ATPase in LSP presumably contributes to the less acidic pH of LSP. In contrast, proteolytically processed cathepsin D (M(r) 17,000) was detected by 30 min on the dead Salmonella-containing phagosomes. Morphological analysis also revealed that after uptake by macrophages, the dead Salmonella are transported to lysosomes, whereas the live bacteria persist in compartments that avoid fusion with lysosomes, indicating that live Salmonella bypass the normal endocytic route targeted to lysosomes and mature in a specialized compartment.  相似文献   

3.
Rab-GTPase regulates the fusion between two specific vesicles. It is well documented that, for their biological function, Rab proteins need to be prenylated for attachment to the vesicle membrane. In contrast, we showed in the present investigation that SopE, a type III secretory protein of Salmonella, translocates onto Salmonella-containing phagosomes (LSP) and mediates the recruitment of non-prenylated Rab5 (Rab5:DeltaC4) on LSP in GTP form. Simultaneously, SopE present in infected cell cytosol acts as an Rab5-specific exchange factor and converts the inactive Rab-GDP to the GTP form. The non-prenylated Rab5 subsequently promoted efficient fusion of LSP with early endosomes. This is the first demonstration that a prenylation-deficient Rab protein retains biological activity and can promote vesicle fusion, if it is recruited on the membrane by some other method.  相似文献   

4.
Fusion of endosomes appears to be required at early steps of receptor-mediated endocytosis. These fusion events have been reconstituted using a cell-free assay and have been shown to require both cytosolic and membrane-associated proteins. We report here that trypsinization of endosomes completely inhibited fusion. Addition of untreated cytosol cannot restore fusion of trypsinized endosomes. However, fusion activity is restored by the addition of either untreated vesicles or a high salt extract containing peripheral membrane proteins (KE). KE contains both the membrane-associated factor(s) required for the reconstitution of fusion using trypsinized endosomes and the factors that are normally provided by the cytosol. The restorative activity of KE was sensitive to trypsin treatment or incubation at 100 degrees C, but was largely N-ethylmaleimide (NEM)-resistant. This and other criteria demonstrated that the trypsin-sensitive factor is distinct from N-ethylmaleimide-sensitive factor (NSF), an NEM-sensitive protein involved in vesicular fusion, and from other known factors that may participate in membrane fusion events. Preliminary fractionation studies indicate that the restorative activity of KE is associated with one or more high molecular weight proteins. The present study indicates that a novel trypsin-sensitive protein(s) is involved in endosome-endosome fusion. This factor is membrane-associated and is not found in an active form in cytosol as prepared.  相似文献   

5.
Initial characterizations of live-Salmonella-containing early (LSEP) and late phagosomes (LSLP) in macrophages show that both phagosomes retain Rab5 and EEA1. In addition, LSEP specifically contain transferrin receptor whereas LSLP possess relatively more rabaptin-5. In contrast to LSLP, late-Salmonella-containing vacuoles in epithelial cells show significantly reduced levels of Rab5 and EEA1. Subsequent results demonstrate that both phagosomes efficiently fuse with early endosomes (EE). In contrast to LSEP, fusion between LSLP and EE is insensitive to ATPγS treatment. Furthermore, LSLP fuses with EE in absence of NEM-sensitive fusion factor (NSF) as well as in the presence of NSF:D1EQ mutant demonstrating that LSLP fusion with EE is NSF independent.  相似文献   

6.
This report examines the inhibition of endosomal vesicle fusion by the alkylating agent N-ethylmaleimide (NEM). The concentration of NEM required to inhibit vesicle fusion depended upon whether membrane and cytosolic fractions were treated separately or together, enabling the resolution of at least two components to the inhibition. The first component is inactivated at low levels of NEM when cytosolic and membrane fractions are treated together. On the contrary, inhibition of the second component required higher levels of NEM but was achieved by treating cytosol and membranes separately. Reconstitution studies indicated that both components were cytosolic and that neither corresponded to the ubiquitous NEM-sensitive fusion protein (NSF). The role of NSF in this fusion reaction was further examined using salt-washed membranes depleted of NSF protein. Under these conditions the fusion reaction was fully dependent upon added NSF whose activity, in this context, was sensitive to NEM treatment. From these data we conclude that NSF activity during endosomal vesicle fusion can be dissected into several steps, only a subset of which (perhaps attachment of NSF to the membrane) are sensitive to NEM. Fusion between salt-washed endosomal membranes was also dependent on soluble NSF attachment proteins.  相似文献   

7.
The Semliki Forest virus (SFV) glycoprotein precursor p62 is processed to the E2 and E3 during the transport from the trans-Golgi network (TGN) to the cell surface. We have studied the regulation of the membrane fusion machinery (Rab/N-ethylmaleimide (NEM)-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)-SNAP receptor) in this processing. Activation of the disassembly of this complex with recombinant NSF stimulated the cleavage of p62 in permeabilized cells. Inactivation of NSF with a mutant alpha-SNAP(L294A) or NEM treatment inhibited processing of p62. Rab GDP dissociation inhibitor inhibited the cleavage. Inactivation of NSF blocks the transport of SFV glycoproteins and vesicular stomatitis virus G-glycoprotein from the TGN membranes to the cell surface. The results support the conclusion that inhibition of membrane fusion arrests p62 in the TGN and prevents its processing by furin.  相似文献   

8.
T Xu  U Ashery  R D Burgoyne    E Neher 《The EMBO journal》1999,18(12):3293-3304
NSF and alpha-SNAP have been shown to be required for SNARE complex disassembly and exocytosis. However, the exact requirement for NSF and alpha-SNAP in vesicular traffic through the secretory pathway remains controversial. We performed a study on the kinetics of exocytosis from bovine chromaffin cells using high time resolution capacitance measurement and electrochemical amperometry, combined with flash photolysis of caged Ca2+ as a fast stimulus. alpha-SNAP, a C-terminal mutant of alpha-SNAP, and NEM were assayed for their effects on secretion kinetics. Two kinetically distinct components of catecholamine release can be observed upon fast step-like elevation of [Ca2+]i. One is the exocytotic burst, thought to represent the readily releasable pool of vesicles. Following the exocytotic burst, secretion proceeds slowly at maintained high [Ca2+]i, which may represent vesicle maturation/recruitment, i.e. some priming steps after docking. alpha-SNAP increased the amplitude of both the exocytotic burst and the slow component but did not change their kinetics, which we examined with millisecond time resolution. In addition, NEM only partially inhibited the slow component without altering the exocytotic burst, fusion kinetics and the rate of endocytosis. These results suggest a role for alpha-SNAP/NSF in priming granules for release at an early step, but not modifying the fusion of readily releasable granules.  相似文献   

9.
To understand the trafficking of endocytosed hemoglobin (Hb) in Leishmania, we investigated the characteristics of in vitro fusion between endosomes containing biotinylated Hb (BHb) and avidin-horseradish peroxidase (AHRP). We showed that early endosome fusion in Leishmania is temperature and cytosol dependent and is inhibited by ATP depletion, ATPgammaS, GTPgammaS and N-ethylmaleimide treatment. The Rab5 homolog from Leishmania donovani, LdRab5, was cloned and expressed. Our results showed that homotypic fusion between the early endosomes in Leishmania is Rab5 dependent. Early endosomes containing BHb fused efficiently with late endosomes in a process regulated by Rab7, whereas no fusion between early and late endosomes was detected using fluid phase markers. Pre-treatment of early endosomes containing BHb with monoclonal antibody specific for the C-terminus of the Hb receptor (HbR) or the addition of the C-terminal cytoplasmic fragment of the HbR specifically inhibited the fusion with late endosomes, suggesting that signal(s) mediated through the HbR cytoplasmic tail promotes the fusion of early endosomes containing Hb with late endosomes.  相似文献   

10.
Using a new assay for membrane fusion between late Golgi/endosomal compartments, we have reconstituted a rapid, robust homotypic fusion reaction between membranes containing Kex2p and Ste13p, two enzymes resident in the yeast trans-Golgi network (TGN). Fusion was temperature, ATP, and cytosol dependent. It was inhibited by dilution, Ca+2 chelation, N-ethylmaleimide, and detergent. Coimmunoisolation confirmed that the reaction resulted in cointegration of the two enzymes into the same bilayer. Antibody inhibition experiments coupled with antigen competition indicated a requirement for soluble NSF attachment protein receptor (SNARE) proteins Tlg1p, Tlg2p, and Vti1p in this reaction. Membrane fusion also required the rab protein Vps21p. Vps21p was sufficient if present on either the Kex2p or Ste13p membranes alone, indicative of an inherent symmetry in the reaction. These results identify roles for a Tlg SNARE complex composed of Tlg1p, Tlg2p, Vti1p, and the rab Vps21p in this previously uncharacterized homotypic TGN fusion reaction.  相似文献   

11.
Lysosomes are dynamic structures capable of fusing with endosomes as well as other lysosomes. We examined the biochemical requirements for homotypic lysosome fusion in vitro using lysosomes obtained from rabbit alveolar macrophages or the cultured macrophage-like cell line, J774E. The in vitro assay measures the formation of a biotinylated HRP–avidin conjugate, in which biotinylated HRP and avidin were accumulated in lysosomes by receptor-mediated endocytosis. We determined that lysosome fusion in vitro was time- and temperature-dependent and required ATP and an N-ethylmaleimide (NEM)-sensitive factor from cytosol. The NEM-sensitive factor was NSF as purified recombinant NSF could completely replace cytosol in the fusion assay whereas a dominant-negative mutant NSF inhibited fusion. Fusion in vitro was extensive; up to 30% of purified macrophage lysosomes were capable of self-fusion. Addition of GTPγs to the in vitro assay inhibited fusion in a concentration-dependent manner. Purified GDP-dissociation inhibitor inhibited homotypic lysosome fusion suggesting the involvement of rabs. Fusion was also inhibited by the heterotrimeric G protein activator mastoparan, but not by its inactive analogue Mas-17. Pertussis toxin, a Gαi activator, inhibited in vitro lysosome fusion whereas cholera toxin, a Gαs activator did not inhibit the fusion reaction. Addition of agents that either promoted or disrupted microtubule function had little effect on either the extent or rate of lysosome fusion. The high value of homotypic fusion was supported by in vivo experiments examining lysosome fusion in heterokaryons formed between cells containing fluorescently labeled lysosomes. In both macrophages and J774E cells, almost complete mixing of the lysosome labels was observed within 1–3 h of UV sendai-mediated cell fusion. These studies provide a model system for identifying the components required for lysosome fusion.  相似文献   

12.
Phagosomes are membrane-bound vesicles, formed by the receptor-mediated internalization of particulate ligands, which exchange soluble and membrane proteins with other endocytic compartments as a part of their maturation process. This exchange of material is undoubtedly mediated by fusion of phagosomes with other membrane-bound compartments of the endocytic pathway. By using a particulate probe (fixed Staphylococcus aureus coated with mouse anti-dinitrophenol monoclonal antibody) localized in phagosomes and a soluble probe (dinitrophenol-derivitized beta-glucuronidase) internalized by receptor-mediated endocytosis, we have studied phagosome-endosome and phagosome-lysosome fusion in intact cells and in a cell-free system. Vesicle fusion was assessed by measuring beta-glucuronidase activity associated with S. aureus particles after lysis of the membranes. In intact macrophages, newly formed phagosomes fused with early endosomes and with lysosomes. Fusion with lysosomes was observed to commence after a short lag period of about 5 min. In broken-cell preparations, phagosomes were able to fuse with early endosomes. It was not possible to reconstitute phagosome-lysosome fusion in vitro. In vitro phagosome-endosome fusion required energy and cytosolic- and membrane-associated proteins. A nonhydrolyzable analog of GTP stimulated fusion at low cytosol concentrations and inhibited fusion at high cytosol concentrations. These observations indicate that the mechanisms mediating phagosome-endosome fusion are similar to those described for endosome-endosome fusion. Our results suggest that exchange of material with endosomes is an important step in the process of phagosome maturation.  相似文献   

13.
The binding of alpha-SNAP to the membrane proteins syntaxin, SNAP-25, and synaptobrevin leads to the recruitment of the N-ethylmaleimide-sensitive fusion protein (NSF). ATP hydrolysis by NSF has been suggested to drive conformational changes in one or more of these membrane proteins that are essential for regulated exocytosis. Functional evidence for a role of alpha-SNAP in exocytosis in adrenal chromaffin cells comes from the ability of this protein to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized cells. Here we examine the effect of a series of deletion mutants of alpha-SNAP on exocytosis, and on the ability of alpha-SNAP to interact with NSF, to define essential domains involved in protein-protein interactions in exocytosis. Deletion of extreme N- or C-terminal regions of alpha-SNAP produced proteins unable to bind to syntaxin or to stimulate exocytosis, suggesting that these domains participate in essential interactions. Deletion of C-terminal residues abolished the ability of alpha-SNAP to bind NSF. In contrast, deletion of up to 120 N-terminal residues did not prevent the binding of NSF to immobilized alpha-SNAP and such mutants were also able to stimulate the ATPase activity of NSF. These results suggest that the C-terminus, but not the N-terminus, of alpha-SNAP is crucial for interactions with NSF. The involvement of the C-terminus of alpha-SNAP, which contains a predicted coiled-coil domain, in the binding of both syntaxin and NSF would place the latter two proteins in proximity in a ternary complex whereupon the energy derived from ATP hydrolysis by NSF could induce a conformational change in syntaxin required for exocytosis to proceed.  相似文献   

14.
We developed a sensitive fluorometric assay to study in vitro fusion between early endosomes isolated from the human hepatoma, Hep G2. Biochemical characterization of this assay showed that fusion between endosomal vesicles was dependent on physiologic temperature, cytosol, and ATP. Fusion was inhibited by pretreatment of vesicles and cytosol with either 1 mM N-ethylmaleimide or 20 microM GTP gamma S. Neither 3 mM ethylene glycol-bis-(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid nor 1 mM CaCl2 significantly affected fusion. In addition, ATP gamma S neither inhibited fusion at 50 microM nor supported fusion at 5 mM. To further our understanding of the factors regulating fusion, inhibitors of endoprotease activity and phosphotyrosine phosphatase activity were assayed for their effect on fusion. The dipeptide inhibitor of endoprotease activity, Cbz-gly-phe-amide, inhibited fusion 70% at 3 mM whereas a dipeptide analogue, Cbz-gly-gly-amide, was without effect. Furthermore, orthovanadate, an inhibitor of phosphotyrosine phosphatase activity, stimulated fusion twofold at 0.5 mM. These results suggest that both tyrosine dephosphorylation and endoprotease activity contribute to the regulation of endosome fusion.  相似文献   

15.
Much recent work has focussed on the role of membrane-bound components in fusion. We show here that p97 and NSF are sufficient to mediate rapid membrane fusion. Fractionation of cytosol revealed that p97 and its co-factor, p47, constitutes the major fusion activity. This was confirmed by depleting p97 from the cytosol, which resulted in an 80% decrease in fusion. Using purified protein, p97 or NSF was found to be sufficient to mediate rapid fusion in an ATP-dependent manner. A regulatory role was observed for their corresponding co-factors, p47 and alpha-SNAP. When present at a molar ratio half of that of the ATPase, both co-factors increased fusion activity significantly. Intriguingly, at this ratio the ATPase activity of the complex measured in solution was at its lowest, suggesting that the co-factor stabilizes the ATP state. The fusion event involved mixing of both leaflets of the opposing membranes and contents of liposomes. We conclude from these data that p97, NSF and perhaps other related ATPases catalyse rapid and complete fusion between lipid bilayers on opposing membranes. This highlights a new role for p97 and NSF and prompts a re-evaluation of current fusion models.  相似文献   

16.
Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.  相似文献   

17.
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.  相似文献   

18.
Characterization of mammalian NSF (G274E) and Drosophila NSF (comatose) mutants revealed an evolutionarily conserved NSF activity distinct from ATPase-dependent SNARE disassembly that was essential for Golgi membrane fusion. Analysis of mammalian NSF function during cell-free assembly of Golgi cisternae from mitotic Golgi fragments revealed that NSF disassembles Golgi SNAREs during mitotic Golgi fragmentation. A subsequent ATPase-independent NSF activity restricted to the reassembly phase is essential for membrane fusion. NSF/alpha-SNAP catalyze the binding of GATE-16 to GOS-28, a Golgi v-SNARE, in a manner that requires ATP but not ATP hydrolysis. GATE-16 is essential for NSF-driven Golgi reassembly and precludes GOS-28 from binding to its cognate t-SNARE, syntaxin-5. We suggest that this occurs at the inception of Golgi reassembly to protect the v-SNARE and regulate SNARE function.  相似文献   

19.
Proteins of the YPT1/SEC4/rab family are well documented to be involved in the regulation of membrane transport. We have previously reported that rab5 regulates endosome-endosome recognition and/or fusion in vitro. Here, we show that this process depends on the rab5 N-terminal domain. Treatment of early endosomal membranes at a low trypsin concentration essentially abolished fusion and cleaved rab5 to a 1 kDa smaller polypeptide. Two-dimensional gel analysis suggested that rab5 is one of the few, if not the only, polypeptides cleaved by trypsin under these conditions. Whereas endosome fusion could be stimulated by cytosol prepared from cells overexpressing rab5 (and thus containing high amounts of the protein), this stimulation was abolished by trypsin-treatment of the cytosol. Trypsin-treated cytosol prepared from mock-transfected cells, which contains very low amounts of rab5, showed no inhibitory activity indicating that rab5 is the target of trypsin in these experiments. Purified rab5 prepared after expression in Escherichia coli was treated with trypsin, which cleaved the protein at the N-terminus. A synthetic peptide of rab5 N-terminal domain inhibited endosome fusion in our cell-free assay. A version of the same peptide truncated at the N-terminus or a peptide of rab3 N-terminal domain were without effects. Altogether, these observations suggest that the N-terminal domain of rab5 is involved in the process of early endosome recognition and/or fusion, presumably because it interacts with another component of the transport machinery.  相似文献   

20.
D O Clary  I C Griff  J E Rothman 《Cell》1990,61(4):709-721
Three new and likely related components of the cellular fusion machinery have been purified from bovine brain cytosol, termed alpha-SNAP (35 kd), beta-SNAP (36 kd), and gamma-SNAP (39 kd). Transport between cisternae of the Golgi complex measured in vitro requires SNAP activity during the membrane fusion stage, and each SNAP is capable of binding the general cellular fusion protein NSF to Golgi membranes. The SNAP-NSF-membrane complex may be an early stage in the assembly of a proposed multisubunit "fusion machine" on the target membrane. SNAP transport factor activity is also found in yeast. Yeast cytosol prepared from a secretion mutant defective in export from the endoplasmic reticulum (sec17) lacks SNAP activity, which can be restored in vitro by the addition of pure alpha-SNAP, but not beta- or gamma-SNAPs. These data suggest that the mechanism of action of SNAPs in membrane fusion is conserved in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号