共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Bruni A Pitotti P Palatini F Dabbeni-Sala E Bigon 《Biochimica et biophysica acta》1979,545(3):404-414
1. F1-ATPase has been extracted by the diphosphatidylglycerol procedure from mitochondrial ATPase complexes that differ in ATPase activity, cold stability, ATPase inhibitor and magnesium content. 2. The ATPase activity of the isolated enzymes was dependent upon the activity of the original particles. In this respect, F1-ATPase extracted from submitochondrial particles prepared in ammonia (pH 9.2) and filtered through Sephadex G-50 was comparable to the enzyme purified by conventional procedures (Horstman, L.L. and Racker, E. (1970) J. Biol. Chem. 245, 1336--1344), whereas F1-ATPase extracted from submitochondrial particles prepared in the presence of magnesium and ATP at neutral pH was similar to factor A (Andreoli, T.E., Lam, K.W. and Sanadi, D.R. (1965) J. Biol. Chem. 240, 2644--2653). 3. No systematic relationship has been found in these F1-ATPase preparations between their ATPase inhibitor content and ATPase activity. Rather, a relationship has been observed between this activity and the efficiency of the ATPase inhibitor-F1-ATPase association within the membrane. 4. It is concluded that the ATPase activity of isolated F1-ATPase reflects the properties of original ATPase complex provided a rapid and not denaturing procedure of isolation is employed. 相似文献
3.
4.
The differential scanning calorimetry trace of F1ATPase, prepared from beef heart submitochondrial particles, has a single sharp endothermic transition at 80.5 +/- 1.0 degrees C and a half-height peak width of 2.0 +/- 0.2 degrees. The transition enthalpy is 19 +/- 2 cal/g of protein. Submitochondrial particles (SMP) have a similar peak at 75.1 +/- 0.5 degrees C with a half-height peak width of 1.8 +/- 0.1 degrees and an enthalpy of 5 +/- 1 cal/g of SMP protein. The SMP transition is provisionally identified as being due to membrane-bound F1ATPase. Tetracaine and dibucaine cause these transitions to shift to lower temperatures; addition of 0.3 mM dibucaine gives peaks at 71.7 and 64.9 degrees C for F1ATPase and SMP, respectively, and 1.0 mM tetracaine gives peaks at 70.0 and 60.5 degrees C for F1ATPase and SMP, respectively. These anesthetic concentrations also give appreciable inhibition of enzyme activity at 25 degrees C. We conclude that the local anesthetics induce conformational alterations in the F1ATPase-protein complex which result both in enzyme inhibition and in the lowering of the thermal denaturation transition temperature. 相似文献
5.
Cross-reconstitution of isolated potato mitochondrial F1-ATPase with F1-depleted beef heart and yeast submitochondrial particles is reported. Potato F1 binds to the heterologous membrane and confers oligomycin sensitivity on the ATPase activity of the reconstituted system. Binding of F1 is promoted by the presence of Mg2+ with the maximal stimulatory effect at 20 mM. Mg2+ increase the sensitivity to oligomycin of the reconstituted system consisting of potato F1 and yeast membranes, however, they do not influence oligomycin sensitivity of potato F1 and beef heart membranes. 相似文献
6.
1. Isolated F1 contains 14.9% N, indicating the presence of at least 8% non-protein material. The Lowry method, standardized with bovine serum albumin, correctly measures the protein content. 2. An extinction coefficient of 28.5 mM-1.cm-1 at 367.5 nm was found for aurovertin D in ethanol. 3. The fluorescence enhancement of aurovertin bound to F1 at pH 7.5 was found to be more than 100-fold. 4. Binding parameters calculated from the fluorescence enhancement with fixed F1 and variable aurovertin concentrations, and vice versa, indicate two binding sites per F1 molecule. 5. The fluorescence data are not readily interpreted on the basis of successive binding of aurovertin by 3-component binding reactions of the form E + A in equilibrium EA, but fit closely a model of two non-interacting sites binding aurovertin in a 4-component reaction, EF + A in equilibrium EA + F, with an equilibrium constant of about 2. 相似文献
7.
1. Purified luciferase and luciferin were used to study the time course of phosphorylation in submitochondrial particles. The light emitted was detected by a single-photon counter, using a multichannel analyser, and the results were analysed by an 'on-line' digital computer. 2. Using NADH as substrate, phosphorylation showed, in general, four phases. These were (i) a period of increasing rate ('lag'); (ii) a period of constant (positive) rate; (iii) a period of zero net rate (plateau), when the phosphorylation potential was maintained at its equilibrium value, and (iv) a period of negative rate (atp hydrolysis) after all the oxygen has been consumed. 3. The lag phase, several seconds in length, was a function of the inhibitor protein content of the particles. It was decreased in particles treated to remove the inhibitor protein, either by prior energisation of the particles with NADH, or by addition of aurovertin, which competes with the inhibitor protein for the ATPase. It was concluded that the ATPase inhibitor inhibits both ATP synthesis and hydrolysis by the ATPase. 4. The rate constant for the release of the inhibitor protein from the energised membrane was determined from the time course of ATP production during the lag phase. The activation energy of this process was measured from the temperature dependence of the lag, and was shown to be 13.3 kcal/mol, lower than the activation energy of ATP synthesis or NADH oxidation. 5. The rate constant for inhibitor release was dependent on 'energisation' of the membrane, being lower in the presence of uncouplers. However, it was possible to decrease the rate constant considerably with agents that collapsed the membrane potential without uncoupling the membrane. It was concluded that the inhibitor protein responded to the membrane potential component of the energisation. 6. A kinetic model for energy-dependent dissociation of the ATPase-inhibitor complex is proposed. 相似文献
8.
It is known that the negatively stained preparations of inner mitochondrial membrane display characteristic approximately 9 nm F1 (ATPase) knobs projecting from the matrix surface. Freeze-etch studies have reported the absence of such knobs from the "etched" surface of the inner mitochondrial membranes. We have demonstrated their presence on the surface of SMP (submitochondrial particles) prepared by freeze-drying for transmission electron microscopy. This identification has been substantiated by comparison with freeze-dried TU particles (trypsin-urea treated SMP) that are devoid of F1 (ATPase). It has been suggested that a layer of water molecules is strongly adsorbed to the surface of SMP and does not sublime during normal freeze-"etching." 相似文献
9.
Fragments of rat liver mitochondrial DNA were isolated. In vivo these fragments were able to form the complexes with the proteins of inner mitochondrial membrane. The fragments represent unique DNA regions with the secondary structure, their A-T content being equal to 82%. With the aid of phosphomonoesterase, polynucleotidkinase and gamma-(32P)-ATP mtDNA fragments were labeled and analyzed for oligopyrimidine composition. It was shown that they were enriched in di- and tri-oligo-pyrimidine blocks. The fragments are shown to form in vitro a complex with the membrane proteins. A single protein m. wt. 40,000) was reisolated from the complex. 相似文献
10.
Reaction mechanism of the membrane-bound ATPase of submitochondrial particles from beef heart 总被引:1,自引:0,他引:1
H S Penefsky 《The Journal of biological chemistry》1985,260(25):13728-13734
Submitochondrial particles from beef heart, washed with dilute solutions of KCl so as to activate the latent, membrane-bound ATPase, F1, may be used to study single site catalysis by the enzyme. [gamma-32P]ATP, incubated with a molar excess of catalytic sites, a condition which favors binding of substrate in only a single catalytic site on the enzyme, is hydrolyzed via a four-step reaction mechanism. The mechanism includes binding in a high affinity catalytic site, Ka = 10(12)M-1, a hydrolytic step for which the equilibrium constant is near unity, and two product release steps in which Pi dissociates from catalytic sites about 10 times more rapidly than ADP. Catalysis by the membrane-bound ATPase also is characterized by a 10(6)-fold acceleration in the rate of net hydrolysis of [gamma-32P]ATP, bound in the high affinity catalytic site, that occurs when substrate is made available to additional catalytic sites on the enzyme. These aspects of the reaction mechanism of the ATPase of submitochondrial particles closely parallel the reaction mechanism determined for solubilized, homogeneous F1 (Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100). The finding that removal of the enzyme from the membrane does not significantly alter the properties of single site catalysis lends support to models of ATP synthesis in oxidative phosphorylation, catalyzed by membrane-bound F1, that have been based on the study of the soluble enzyme. 相似文献
11.
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) shares certain properties with the mitochondrial ATPase inhibitor protein. At low concentrations it inhibits both soluble and particulate mitochondrial ATPase and has no effect on oxidative phosphorylation in submitochondrial particles. Unlike the mitochondrial inhibitor protein quercetin inhibits the ATP-dependent reduction of NAD+ by succinate in fully reconstituted submitochondrial particles. A comparison of various flavones indicates that the hydroxyl groups at the 3′ and perhaps 3 position are important for the inhibition of ATPase activity. 相似文献
12.
ATPase of Escherichia coli: purification, dissociation, and reconstitution of the active complex from the isolated subunits. 总被引:5,自引:0,他引:5
A simple procedure for the purification of Mg2+-stimulated ATPase of Escherichia coli by fractionation with poly(ethylene glycols) and gel filtration is described. The enzyme restores ATPase-linked reactions to membrane preparations lacking these activities. Five different polypeptides (alpha, beta, gamma, delta, epsilon) are observed in sodium dodecyl sulfate electrophoresis. Freezing in salt solutions splits the enzyme complex into subunits which do not possess any catalytic activity. The presence of different subunits is confirmed by electrophoretic and immunological methods. The active enzyme complex can be reconstituted by decreasing the ionic strength in the dissociated sample. Temperature, pH, protein concentration, and the presence of substrate are each important determinants of the rate and extent of reconstitution. The dissociated enzyme has been separated by ion-exchange chromatography into two major fragments. Fragment IA has a molecular weight of about 100000 and contains the alpha, gamma, and epsilon polypeptides. The minor fragment, IB, has about the same molecular weight but contains, besides alpha, gamma, and epsilon, the delta polypeptide. Fragment II, with a molecular weight of about 52000, appears to be identical with the beta polypeptide. ATPase activity can be reconstituted from fragments IA and II, whereas the capacity of the ATPase to drive energy-dependent processes in depleted membrane vesicles is only restored after incubation of these two fractions with fraction IB, which contains the delta subunit. 相似文献
13.
Bovine heart submitochondrial particles depleted of F1 by treatment with urea (‘F1-depleted particles’) were incubated with soluble F1-ATPase. The binding of F1 to the particles and the concomitant conferral of oligomycin sensitivity on the ATPase activity required the presence of cations in the incubation medium. NH+4, K+, Rb+, Cs+, Na+ and Li+ promoted reconstitution maximally at 40–74 mM, guanidinium+ and Tris+ at 20–30 mM, and Ca2+ and Mg2+ at 3–5 mM. The particles exhibited a negative ζ-potential, as determined by microelectrophoresis, and this was neutralized by mono- and divalent cations in the same concentration range as that needed to promote F1 binding and reconstitution of oligomycin-sensitive ATPase. It is concluded that the cations act by neutralizing negative charges on the membrane surface, mainly negatively charged phospholipids. These results are discussed in relation to earlier findings reported in the literature with F1-depleted thylakoid membranes and with submitochondrial particles depleted of both F1 and the coupling proteins F6 and oligomycin sensitivity-conferring protein. 相似文献
14.
It is known that the negatively stained preparations of inner mitochondrial membrane display characteristic ∼9 nmF 1 (ATPase) knobs projecting from the matrix surface. Freeze-etch studies have reported the absence of such knobs from the “etched” surface of the inner mitochondrial membranes. We have demonstrated their presence on the surface of SMP (submitochondrial particles) prepared by freeze-drying for transmission electron microscopy. This identification has been substantiated by comparison with the freeze-dried TU particles (trypsin-urea treated SMP) that are devoid ofF 1 (ATPase). It has been suggested that a layer of water molecules is strongly adsorbed to the surface of SMP and does not sublime during normal freeze-“etching.” 相似文献
15.
1. Beef-heart mitochondrial ATPase (F1) is inactivated and dissociated by incubation with 0.85 M LiCl. ATP partly protects against inactivation. Three dissociation products could be identified after chromatography on diethylaminoethylcellulose: the delta subunit which is not adsorbed, the beta subunit which may be eluted from the column, and the alpha and gamma subunits which remain bound to the column. 2. Aurovertin binds to dissociated F1 with a fluorescence enhancement equal to about 30% that found with F1. Unlike intact F1 which shows two kinetically separated phases of fluorescence enhancement, only a fast phase is found with dissociated enzyme. 3. Fluorescence measurements at varying aurovertin and protein concentrations indicate that aurovertin binds to dissociated F1 in a simple 3-component reaction with dissociation constant 0.4 muM. There are two indistinguishable binding sites, calculated on the basis of the initial F1 concentration before dissociation. 4. The beta subunit was isolated from dissociated F1 by DEAE-cellulose chromatography. It has no ATPase activity but reacts with aurovertin with a fluorescence enhancement similar to that of dissociated F1. 5. The isolated beta subunit contains one aurovertin binding site with a dissociation constant of 0.56 muM. 6. It is concluded that F1 contains two beta subunits. 相似文献
16.
17.
T Kimura K Nakamura H Kajiura H Hattori N Nelson T Asahi 《The Journal of biological chemistry》1989,264(6):3183-3186
In addition to two major alpha- and beta-subunits, the soluble oligomycin-insensitive F1ATPase purified from sweet potato root mitochondria contains four different minor subunits of gamma (Mr = 35,500), delta (Mr = 27,000), delta' (Mr = 23,000), and epsilon (Mr = 12,000) (Iwasaki, Y., and Asashi, T. (1983) Arch. Biochem. Biophys. 227, 164-173). Among these minor subunits, the delta-subunit specifically cross-reacted with an antibody against the delta-subunit of maize mitochondrial F1 which contains only three minor gamma-, delta- and epsilon-subunits like F1ATPases from other organisms, indicating that the delta'-subunit is an extra subunit of sweet potato F1 which is absent in the maize F1. All of the four minor subunits of sweet potato F1 were purified and their N-terminal amino acid sequences of 30-36 residues were determined. The N-terminal sequence of gamma-subunit was homologous to those of the gamma-subunits of bacterial F1 and mammalian mitochondrial F1. The N-terminal sequence of the delta-subunit was homologous to those of the delta-subunits of bacterial F1, chloroplast CF1, and oligomycin sensitivity conferring protein of bovine mitochondrial F1F0. A sequence homology was also observed between the sweet potato epsilon-subunit and the epsilon-subunit of bovine mitochondrial F1. The N-terminal sequence of the delta'-subunit did not show any significant sequence homology to known protein sequences. These subunit correspondences place plant mitochondrial F1 at an unique position in the evolution of F1ATPase. 相似文献
18.
Contessi S Bald D Baeuerlein E Dabbeni-Sala F Mavelli I Lippe G 《Biochemical and biophysical research communications》2001,281(5):1266-1270
Isolated alpha- and beta-subunits of Thermophilic Bacillus PS3 F(1)ATPase (TF(1)) bind about 1 Fe(III) equivalent. Upon reassembling in the symmetric alpha(3)beta(3) hexamer, Fe(III) binding capacity decreases, as this complex binds about three Fe(III) equivalents. In accordance, when the hexamer is dissociated in the alpha(1)beta(1) heterodimer, each heterodimer binds about one Fe(III) equivalent. On the contrary, native TF(1) exhibits a single Fe(III) site. CD spectra in far UV indicate that upon Fe(III) binding both the whole complex and the isolated beta-subunit undergo structural modifications accompanied by decrease of alpha-helix content, while alpha-subunit doesn't. As in alpha(3)beta(3) and in the whole enzyme the number of bound Fe(III) equivalents is consistent with the number of beta-subunits in the "empty" conformation, it is inferred that the single Fe(III) site in TF(1) is probably located in beta(E). 相似文献
19.
O B Martins I Salgado-Martins M A Grieco A Gómez-Puyou M T de Gómez-Puyou 《Biochemistry》1992,31(25):5784-5790
The binding of ATP radiolabeled in the adenine ring or in the gamma- or alpha-phosphate to F1-ATPase in complex with the endogenous inhibitor protein was measured in bovine heart submitochondrial particles by filtration in Sephadex centrifuge columns or by Millipore filtration techniques. These particles had 0.44 +/- 0.05 nmol of F1 mg-1 as determined by the method of Ferguson et al. [(1976) Biochem. J. 153, 347]. By incubation of the particles with 50 microM ATP, and low magnesium concentrations (less than 0.1 microM MgATP), it was possible to observe that 3.5 mol of [gamma-32P]ATP was tightly bound per mole of F1 before the completion of one catalytic cycle. With [gamma-32P]ITP, only one tight binding site was detected. Half-maximal binding of adenine nucleotides took place with about 10 microM. All the bound radioactive nucleotides were released from the enzyme after a chase with cold ATP or ADP; 1.5 sites exchanged with a rate constant of 2.8 s-1 and 2 with a rate constant of 0.45 s-1. Only one of the tightly bound adenine nucleotides was released by 1 mM ITP; the rate constant was 3.2 s-1. It was also observed that two of the bound [gamma-32P]ATP were slowly hydrolyzed after removal of medium ATP; when the same experiment was repeated with [alpha-32P]ATP, all the label remained bound to F1, suggesting that ADP remained bound after completion of ATP hydrolysis. Particles in which the natural ATPase inhibitor protein had been released bound tightly only one adenine nucleotide per enzyme.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Mitochondrial F1, inactivated to various extents with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), was dissociated with LiCl and reconstituted after removal of the salt. This procedure resulted in a reactivation that corresponded with a reactivation theoretically expected on the basis of the assumption that the reassociation of beta-subunits into native F1 molecules is random and that two out of the three beta-subunits are directly involved in catalysis. Repeated inactivation of such reactivated F1, followed by the same dissociation-association procedure, resulted in similar data. After inactivation of F1 by covalent binding of 2-N-AT(D)P to one catalytic site, no reactivation upon dissociation-reassociation was obtained due to the fact that such modified F1 did not dissociate under the experimental conditions used. 相似文献