首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many organs contain epithelial tubes that transport gases or liquids . Proper tube size and shape is crucial for organ function, but the mechanisms controlling tube diameter and length are poorly understood. Recent studies of tracheal (respiratory) tube morphogenesis in Drosophila show that chitin synthesis genes produce an expanding chitin cylinder in the apical (luminal) extracellular matrix (ECM) that coordinates the dilation of the surrounding epithelium . Here, we describe two genes involved in chitin modification, serpentine (serp) and vermiform (verm), mutations in which cause excessively long and tortuous tracheal tubes. The genes encode similar proteins with an LDL-receptor ligand binding motif and chitin binding and deacetylation domains. Both proteins are expressed and secreted during tube expansion and localize throughout the lumen in a chitin-dependent manner. Unlike previously characterized chitin pathway genes, serp and verm are not required for chitin synthesis or secretion but rather for its normal fibrillar structure. The mutations also affect structural properties of another chitinous matrix, epidermal cuticle. Our work demonstrates that chitin and the matrix proteins Serp and Verm limit tube elongation, and it suggests that tube length is controlled independently of diameter by modulating physical properties of the chitin ECM, presumably by N-deacetylation of chitin and conversion to chitosan.  相似文献   

2.
Precise epithelial tube diameters rely on coordinated cell shape changes and apical membrane enlargement during tube growth. Uniform tube expansion in the developing Drosophila trachea requires the assembly of a transient intraluminal chitin matrix, where chitin forms a broad cable that expands in accordance with lumen diameter growth. Like the chitinous procuticle, the tracheal luminal chitin cable displays a filamentous structure that presumably is important for matrix function. Here, we show that knickkopf (knk) and retroactive (rtv) are two new tube expansion mutants that fail to form filamentous chitin structures, both in the tracheal and cuticular chitin matrices. Mutations in knk and rtv are known to disrupt the embryonic cuticle, and our combined genetic analysis and chemical chitin inhibition experiments support the argument that Knk and Rtv specifically assist in chitin function. We show that Knk is an apical GPI-linked protein that acts at the plasma membrane. Subcellular mislocalization of Knk in previously identified tube expansion mutants that disrupt septate junction (SJ) proteins, further suggest that SJs promote chitinous matrix organization and uniform tube expansion by supporting polarized epithelial protein localization. We propose a model in which Knk and the predicted chitin-binding protein Rtv form membrane complexes essential for epithelial tubulogenesis and cuticle formation through their specific role in directing chitin filament assembly.  相似文献   

3.
4.
The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion.  相似文献   

5.
Epithelial tubes are found in many vital organs and require uniform and correct tube diameters for optimal function. Tube size depends on apical membrane growth and subapical cytoskeletal reorganization, but the cues that coordinate these events to ensure functional tube shape remain elusive. We find that epithelial tubes in the Drosophila trachea require luminal chitin polysaccharides to attain the correct diameter. Tracheal chitin forms a broad transient filament within the tubes during the restricted period of expansion. Loss of chitin causes tubular constrictions and cysts associated with irregular subapical cytoskeletal organization, without affecting epithelial integrity and polarity. Analysis of previously identified tube expansion mutants in genes encoding septate junction proteins further suggests that septate junction components may function in tubulogenesis through their role in luminal matrix assembly. We propose that the transient luminal protein/polysaccharide matrix is sensed by the epithelial cells and coordinates cytoskeletal organization to ensure uniform lumen diameter.  相似文献   

6.
The heterodimeric Na,K-ATPase has been implicated in vertebrate and invertebrate epithelial cell junctions, morphogenesis and oncogenesis, but the mechanisms involved are unclear. We previously showed that the Drosophila Na,K-ATPase is required for septate junction (SJ) formation and that of the three beta-subunit loci, only Nrv2 isoforms support epithelial SJ barrier function and tracheal tube-size control. Here we show that Nrv1 is endogenously co-expressed with Nrv2 in the epidermis and tracheal system, but Nrv1 has a basolateral localization and appears to be excluded from the Nrv2-containing SJs. When the normally neuronal Nrv3 is expressed in epithelial cells, it does not associate with SJs. Thus, the beta-subunit is a key determinant of Na,K-ATPase subcellular localization as well as function. However, localization of the Na,K-ATPase to SJs is not sufficient for junctional activity because although several Nrv2/Nrv3 chimeric beta-subunits localize to SJs, only those containing the extracellular domain of Nrv2 have junctional activity. Junctional activity is also specific to different alpha-subunit isoforms, with only some isoforms from the major alpha-subunit locus being able to provide full barrier function and produce normal tracheal tubes. Importantly, mutations predicted to inactivate ATPalpha catalytic function do not compromise junctional activity, demonstrating that the Drosophila Na,K-ATPase has an ion-pump-independent role in junction formation and tracheal morphogenesis. These results define new functions for the intensively studied Na,K-ATPase. Strikingly, the rat alpha1 isoform has full junctional activity and can rescue Atpalpha-null mutants to viability, suggesting that the Na,K-ATPase has an evolutionarily conserved role in junction formation and function.  相似文献   

7.
Organ morphogenesis requires the coordinated activity of many mechanisms involved in cell rearrangements, size control, cell proliferation and organ integrity. Here we report that Lachesin (Lac), a cell surface protein, is required for the proper morphogenesis of the Drosophila tracheal system. Homozygous embryos for Lac mutations, which we find fail to complement the previous identified bulbous (bulb) mutation, display convoluted tracheal tubes and tube breaks. At the cellular level, we can detect enlarged cells, suggesting that Lac regulates organ size by influencing cell length rather than cell number, and cell detachments, indicating a role for Lac in cell adhesion. Results from an in vitro assay further support that Lac behaves as a homophilic cell adhesion molecule. Lac co-localizes with Septate Junction (SJ) proteins, and ultrastructural analysis confirms that it accumulates specifically at this type of cellular junction. In Lac mutant embryos, previously characterized components of the SJs are mislocalized, indicating that the proper organization of SJs requires Lac function. In addition, mutations in genes encoding other components of the SJs produce a similar tracheal phenotype. These results point out a new role of the SJs in morphogenesis regulating cell adhesion and cell size.  相似文献   

8.

Background

Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation. In the trachea, COPII anterograde transport of luminal proteins is required for extracellular matrix assembly and the concurrent tube expansion.

Principal Findings

We identified and analyzed Drosophila COPI retrograde transport mutants with narrow tracheal tubes. γCOP mutants fail to efficiently secrete luminal components and assemble the luminal chitinous matrix during tracheal tube expansion. Likewise, tube extension is defective in salivary glands, where it also coincides with a failure in the luminal deposition and assembly of a distinct, transient intraluminal matrix. Drosophila γCOP colocalizes with cis-Golgi markers and in γCOP mutant embryos the ER and Golgi structures are severely disrupted. Analysis of γCOP and Sar1 double mutants suggests that bidirectional ER-Golgi traffic maintains the ER and Golgi compartments and is required for secretion and assembly of luminal matrixes during tube expansion.

Conclusions/Significance

Our results demonstrate the function of COPI components in organ morphogenesis and highlight the common role of apical secretion and assembly of transient organotypic matrices in tube expansion. Intraluminal matrices have been detected in the notochord of ascidians and zebrafish COPI mutants show defects in notochord expansion. Thus, the programmed deposition and growth of distinct luminal molds may provide distending forces during tube expansion in diverse organs.  相似文献   

9.
Although many organ functions rely on epithelial tubes with correct dimensions, mechanisms underlying tube size control are poorly understood. We analyse the cellular mechanism of tracheal tube elongation in Drosophila, and describe an essential role of the conserved tyrosine kinase Src42A in this process. We show that Src42A is required for polarized cell shape changes and cell rearrangements that mediate tube elongation. In contrast, diametric expansion is controlled by apical secretion independently of Src42A. Constitutive activation of Src42A induces axial cell stretching and tracheal overelongation, indicating that Src42A acts instructively in this process. We propose that Src42A-dependent recycling of E-Cadherin at adherens junctions is limiting for cell shape changes and rearrangements in the axial dimension of the tube. Thus, we define distinct cellular processes that independently control axial and diametric expansion of a cylindrical epithelium in a developing organ. Whereas exocytosis-dependent membrane growth drives circumferential tube expansion, Src42A is required to orient membrane growth in the axial dimension of the tube.  相似文献   

10.
The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular system and other organs, but the genetic and cellular mechanisms that control epithelial tube size are unknown. We investigated tube size control in the embryonic and larval tracheal (respiratory) system of Drosophila. A morphometric analysis showed that primary tracheal branches have characteristic sizes that undergo programmed changes during development. Branches grow at different rates and their diameters and lengths are regulated independently: tube length increases gradually throughout development, whereas tube diameter increases abruptly at discrete times in development. Cellular analysis and manipulation of tracheal cell number using cell-cycle mutations demonstrated that tube size is not dictated by the specific number or shape of the tracheal cells that constitute it. Rather, tube size appears to be controlled by coordinately regulating the apical (lumenal) surface of tracheal cells. Genetic analysis showed that tube sizes are specified early by branch identity genes, and the subsequent enlargement of branches to their mature sizes and maintenance of the expanded tubes involves a new set of genes described here, which we call tube expansion genes. This work establishes a genetic system for investigating tube size regulation, and provides an outline of the genetic program and cellular events underlying tracheal tube size control.  相似文献   

11.
The epidermis and internal tubular organs, such as gut and lungs, are exposed to a hostile environment. They form an extracellular matrix to provide epithelial integrity and to prevent contact with pathogens and toxins. In arthropods, the cuticle protects, shapes, and enables the functioning of organs. During development, cuticle matrix is shielded from premature degradation; however, underlying molecular mechanisms are poorly understood. Previously, we identified the conserved obstructor multigene-family, which encodes chitin-binding proteins. Here we show that Obstructor-A is required for extracellular matrix dynamics in cuticle forming organs. Loss of obstructor-A causes severe defects during cuticle molting, wound protection, tube expansion and larval growth control. We found that Obstructor-A interacts and forms a core complex with the polysaccharide chitin, the cuticle modifier Knickkopf and the chitin deacetylase Serpentine. Knickkopf protects chitin from chitinase-dependent degradation and deacetylase enzymes ensure extracellular matrix maturation. We provide evidence that Obstructor-A is required to control the presence of Knickkopf and Serpentine in the extracellular matrix. We propose a model suggesting that Obstructor-A coordinates the core complex for extracellular matrix protection from premature degradation. This mechanism enables exoskeletal molting, tube expansion, and epithelial integrity. The evolutionary conservation suggests a common role of Obstructor-A and homologs in coordinating extracellular matrix protection in epithelial tissues of chitinous invertebrates.  相似文献   

12.
Septate junctions (SJs) in epithelial and neuronal cells play an important role in the formation and maintenance of charge and size selective barriers. They form the basis for the ensheathment of nerve fibers in Drosophila and for the attachment of myelin loops to axonal surface in vertebrates. The cell-adhesion molecules NRX IV/Caspr/Paranodin (NCP1), contactin and Neurofascin-155 (NF-155) are all present at the vertebrate axo-glial SJs. Mutational analyses have shown that vertebrate NCP1 and its Drosophila homolog, Neurexin IV (NRX IV) are required for the formation of SJs. In this study, we report the genetic, molecular and biochemical characterization of the Drosophila homolog of vertebrate contactin, CONT. Ultrastructural and dye-exclusion analyses of Cont mutant embryos show that CONT is required for organization of SJs and paracellular barrier function. We show that CONT, Neuroglian (NRG) (Drosophila homolog of NF-155) and NRX IV are interdependent for their SJ localization and these proteins form a tripartite complex. Hence, our data provide evidence that the organization of SJs is dependent on the interactions between these highly conserved cell-adhesion molecules.  相似文献   

13.
Many epithelia produce apical extracellular matrices (aECM) that are crucial for organ morphogenesis or physiology. Apical ECM formation relies on coordinated synthesis and modification of constituting components, to enable their subcellular targeting and extracellular assembly into functional matrices. The exoskeleton of Drosophila, the cuticle, is a stratified aECM containing ordered chitin polysaccharide lamellae and proteinaceous layers, and is suited for studies of molecular functions needed for aECM assembly. Here, we show that Drosophila mummy (mmy) mutants display defects in epithelial organisation in conjunction with aberrant deposition of the cuticle and an apical matrix needed for tracheal tubulogenesis. We find that mmy encodes the UDP-N-acetylglucosamine pyrophosphorylase, which catalyses the production of UDP-N-acetylglucosamine, an obligate substrate for chitin synthases as well as for protein glycosylation and GPI-anchor formation. Consequently, in mmy mutants GlcNAc-groups including chitin are severely reduced and modification and subcellular localisation of proteins designated for extracellular space is defective. Moreover, mmy expression is selectively upregulated in epithelia at the time they actively deposit aECM, and is altered by the moulting hormone 20-Hydroxyecdysone, suggesting that mmy is part of a developmental genetic programme to promote aECM formation.  相似文献   

14.
The development of air-filled respiratory organs is crucial for survival at birth. We used a combination of live imaging and genetic analysis to dissect respiratory organ maturation in the embryonic Drosophila trachea. We found that tracheal tube maturation entails three precise epithelial transitions. Initially, a secretion burst deposits proteins into the lumen. Solid luminal material is then rapidly cleared from the tubes, and shortly thereafter liquid is removed. To elucidate the cellular mechanisms behind these transitions, we identified gas-filling-deficient mutants showing narrow or protein-clogged tubes. These mutations either disrupt endoplasmatic reticulum-to-Golgi vesicle transport or endocytosis. First, Sar1 is required for protein secretion, luminal matrix assembly, and diametric tube expansion. Subsequently, a sharp pulse of Rab5-dependent endocytic activity rapidly internalizes and clears luminal contents. The coordination of luminal matrix secretion and endocytosis may be a general mechanism in tubular organ morphogenesis and maturation.  相似文献   

15.
An important step in epithelial organ development is size maturation of the organ lumen to attain correct dimensions. Here we show that the regulated expression of Tenectin (Tnc) is critical to shape the Drosophila melanogaster hindgut tube. Tnc is a secreted protein that fills the embryonic hindgut lumen during tube diameter expansion. Inside the lumen, Tnc contributes to detectable O-Glycans and forms a dense striated matrix. Loss of tnc causes a narrow hindgut tube, while Tnc over-expression drives tube dilation in a dose-dependent manner. Cellular analyses show that luminal accumulation of Tnc causes an increase in inner and outer tube diameter, and cell flattening within the tube wall, similar to the effects of a hydrostatic pressure in other systems. When Tnc expression is induced only in cells at one side of the tube wall, Tnc fills the lumen and equally affects all cells at the lumen perimeter, arguing that Tnc acts non-cell-autonomously. Moreover, when Tnc expression is directed to a segment of a tube, its luminal accumulation is restricted to this segment and affects the surrounding cells to promote a corresponding local diameter expansion. These findings suggest that deposition of Tnc into the lumen might contribute to expansion of the lumen volume, and thereby to stretching of the tube wall. Consistent with such an idea, ectopic expression of Tnc in different developing epithelial tubes is sufficient to cause dilation, while epidermal Tnc expression has no effect on morphology. Together, the results show that epithelial tube diameter can be modelled by regulating the levels and pattern of expression of a single luminal glycoprotein.  相似文献   

16.
Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons.  相似文献   

17.
Synaptic junctions (SJs) were isolated from the forebrains of rats ranging in postnatal age from 10 days to greater than 1 year. SJ glycoproteins that react with Concanavalin A (Con A) were isolated by chromatography on Con A-agarose and separated by gel electrophoresis. The concentrations of the major SJ Con A binding (Con A+) glycoproteins (apparent Mr 180,000, 130,000, and 110,000) increased between 10 and 28 days, with GP180 and GP110 showing greater relative increases than GP130. Con A binding oligosaccharides associated with 10-day SJs were sensitive to digestion with endoglycosidase C11 and alpha-mannosidase, indicating that they were of the high-mannose type, as previously shown for 28-day SJs. Con A+ oligosaccharides from rats of increasing postnatal age were analyzed by chromatography on Biogel P-4. Two major oligosaccharides, containing five and eight mannose residues, were present in SJs of all ages examined. During development the ratio of man5 to man8 oligosaccharides increased, so that man5 constituted the predominant species in 28-day and adult SJs. Peptide mapping experiments showed that GP180, GP130, and GP110 were each associated with a unique polypeptide composition. Little or no change in peptide composition of the major SJ glycoproteins occurred during development.  相似文献   

18.
Summary Interactions between epithelial cells and their environment are critical for normal function. Mammary epithelial cells require hormonal and extracellular matrix (ECM) signalling for the expression of tissue specific characteristics. With regard to ECM, cultured mammary epithelial cells synthesize and secrete milk proteins on stromal collagen I matrices. The onset of function coincides both with morphogenesis of a polarized epithelium and with deposition of basement membrane ECM basal to the cell layer. Mammary specific morphogenesis and biochemical differentiation is induced if mammary cells are cultured directly on exogenous basement membrane (EHS). Thus ECM may effect function by the concerted effect of permissivity for cell shape changes and the direct biochemical signalling of basement membrane molecules.A model is discussed where initial ECM control of mammary epithelial cell function originates in the interstitial matrix of stroma and subsequently transfers to the basement membrane when the epithelial cells have accumulated and deposited an organized basement membrane matrix.Dedicated to Professor Stuart Patton on the occasion of his 70th birthday.  相似文献   

19.
The formation of branched epithelial networks is fundamental to the development of many organs, such as the lung, the kidney or the vasculature. Little is known about the mechanisms that control cell rearrangements during tubulogenesis and regulate the size of individual tubes. Recent studies indicate that whereas the basal surface of tube cells interacts with the surrounding tissues and helps to shape the ramification pattern of tubular organs, the apical surface has an important role in the regulation of tube diameter and tube growth. Here we report that two proteins, Piopio (Pio) and Dumpy (Dp), containing a zona pellucida (ZP) domain are essential for the generation of the interconnected tracheal network in Drosophila melanogaster. Pio is secreted apically, accumulates in the tracheal lumen and possibly interacts with Dp through the ZP domains. In the absence of Pio and Dp, multicellular tubes do not rearrange through cell elongation and cell intercalation to form narrow tubes with autocellular junctions; instead they are transformed into multicellular cysts, which leads to a severe disruption of the branched pattern. We propose that an extracellular matrix containing Pio and Dp provides a structural network in the luminal space, around which cell rearrangements can take place in an ordered fashion without losing interconnections. Our results suggest that a similar structural role might be attributed to other ZP-domain proteins in the formation of different branched organs.  相似文献   

20.
The vertebrate tight junction is a critical claudin-based cell–cell junction that functions to prevent free paracellular diffusion between epithelial cells. In Drosophila, this barrier is provided by the septate junction, which, despite being ultrastructurally distinct from the vertebrate tight junction, also contains the claudin-family proteins Megatrachea and Sinuous. Here we identify a third Drosophila claudin, Kune-kune, that localizes to septate junctions and is required for junction organization and paracellular barrier function, but not for apical-basal polarity. In the tracheal system, septate junctions have a barrier-independent function that promotes lumenal secretion of Vermiform and Serpentine, extracellular matrix modifier proteins that are required to restrict tube length. As with Sinuous and Megatrachea, loss of Kune-kune prevents this secretion and results in overly elongated tubes. Embryos lacking all three characterized claudins have tracheal phenotypes similar to any single mutant, indicating that these claudins act in the same pathway controlling tracheal tube length. However, we find that there are distinct requirements for these claudins in epithelial septate junction formation. Megatrachea is predominantly required for correct localization of septate junction components, while Sinuous is predominantly required for maintaining normal levels of septate junction proteins. Kune-kune is required for both localization and levels. Double- and triple-mutant combinations of Sinuous and Megatrachea with Kune-kune resemble the Kune-kune single mutant, suggesting that Kune-kune has a more central role in septate junction formation than either Sinuous or Megatrachea.EPITHELIA are essential for separating physiologically distinct body compartments and regulating trafficking between them. For proper function, it is imperative that epithelia maintain effective barriers against free paracellular diffusion. To this end, epithelial cells contain occluding junctions, which regulate paracellular permeability. In vertebrates, this is accomplished by tight junctions (TJ), structures that are characterized by regions of close membrane apposition between adjacent cells known as “kissing points” (Tsukita and Furuse 2002). While the TJ is made up of at least 40 different components (Schneeberger and Lynch 2004), the core proteins responsible for the paracellular barrier are the claudins (Angelow et al. 2008).Claudins are four-transmembrane domain proteins that form homo- and heterophilic interactions within the same cell (Furuse et al. 1999; Blasig et al. 2006) and with claudins in adjacent cells (Furuse et al. 1999), thereby establishing the paracellular seal. There are 24 members of the claudin family in mammals, many of which display distinct, tissue-specific expression patterns (Kiuchi-Saishin et al. 2002; Angelow et al. 2008). Mutations in several claudins can cause significant paracellular permeability defects in mice. For example, mutations in claudin-14 increase TJ permeability in the organ of Corti and cause deafness (Ben-Yosef et al. 2003), while loss of claudin-1 compromises epidermal barrier function (Furuse et al. 2002).In Drosophila, primary (ectodermally derived) epithelia lack discernable TJs and instead use pleated septate junctions (SJ) for the paracellular barrier (Baumgartner et al. 1996; Lamb et al. 1998; Genova and Fehon 2003; Paul et al. 2003). However, despite sharing a common barrier function, vertebrate TJs and invertebrate SJs differ in several ways. While vertebrate TJs are positioned apical to adherens junctions (AJ) and contain conserved apical polarity proteins, SJs are basal to AJs and contain conserved basolateral polarity proteins (reviewed in Tepass 2003; Wu and Beitel 2004). In addition, SJs do not contain kissing points, but rather ladder-like septa that span the intermembrane space (Lane and Swales 1982; Tepass and Hartenstein 1994).Beyond their general epithelial barrier function, SJs are also required for several tissue-specific processes. Glial cells, for example, ensheath nerve fibers and use SJs to maintain the blood–brain barrier (Auld et al. 1995; Baumgartner et al. 1996; Schwabe et al. 2005). In the embryonic tracheal system, SJs are required for the apical secretion of the lumenal matrix modifying proteins, Vermiform (Verm) and Serpentine (Serp), which act through undefined pathways to restrict tube length (Wang et al. 2006). This secretory pathway appears to be specific for Verm and Serp, since other apical proteins are secreted normally in SJ mutants. SJ proteins have also been shown to play a role in morphogenesis of the heart tube, even though this tissue lacks typical SJ septa (Yi et al. 2008).Although SJs have clear differences from vertebrate TJs, SJs contain at least two claudins, Megatrachea (Mega) and Sinuous (Sinu), both of which are required for the paracellular barrier (Behr et al. 2003; Wu et al. 2004; Stork et al. 2008). In this article, we identify a third claudin, Kune-kune (Kune), that is an integral SJ protein. Like the other claudins, Kune is required for maintaining epithelial paracellular barrier and tracheal tube size control and is not required for apical-basal polarity. We also find that, of all three characterized claudins, Kune has a more severe SJ phenotype, suggesting that it is a more central player in SJ organization and function than previously characterized Drosophila claudins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号