首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The 7315c pituitary tumor cell expresses a homogeneous population of dopamine receptors that are functionally similar to brain dopamine D2 receptors. [3H]-Sulpiride binding to 7315c cell homogenates was specific and saturable, and K i values for compounds to compete for these sites were highly correlated with values for the same compounds at D2 receptors in brain. Dopamine maximally inhibited ∼65% of forskolin-stimulated cyclase activity in cell membranes. Some D2 agonists had lower efficacies, suggesting that some compounds are partial agonists at this receptor. Removal of GTP from the assay buffer or pretreatment of the tissue with pertussis toxin abolished the inhibition of adenylyl cyclase by dopamine. Immunodetection of most of the known Gα subunits revealed that Gi1, Gi2, Gi3, Go, Gq, and Gs are present in the 7315c membrane. Pretreatment with the AS antibody (which recognizes the C-terminal regions of Gαi1 and Gαi2) significantly attenuated the inhibition of adenylyl cyclase activity by dopamine, whereas antibodies to C-terminal regions of the other Gα subunits had no effect. These findings suggest that the dopamine D2 receptor regulates cyclase inhibition predominantly via Gi1 and/or Gi2 and that the 7315c tumor cells provide a useful model for studying naturally expressed dopamine D2 receptors in the absence of other dopamine receptor subtypes.  相似文献   

2.
Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands.  相似文献   

3.
Formyl peptide-receptor like-1 (FPRL-1) may possess critical roles in Alzheimer's diseases, chemotaxis and release of neurotoxins, possibly through its regulation of nuclear factor-κB (NFκB). Here we illustrate that activation of FPRL-1 in human U87 astrocytoma or Chinese hamster ovary cells stably expressing the receptor resulted in the phosphorylations of inhibitor-κB kinase (IKK), an onset kinase for NFκB signaling cascade. FPRL-1 selective hexapeptide Trp-Lys-Tyr-Met-Val-Met (WKYMVM) promoted IKK phosphorylations in time- and dose-dependent manners while pre-treatment of pertussis toxin abrogated the Gαi/o-dependent stimulations. The FPRL-1-mediated IKK phosphorylation required extracellular signal-regulated protein kinase (ERK), phosphatidylinositol 3-kinase and cellular Src (c-Src), but not c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Despite its ability to mobilize Ca2+, WKYMVM did not require Ca2+ for the modulation of IKK phosphorylation. Activation of FPRL-1 also induced NFκB-driven luciferase expression. Interestingly, cholesterol depletion from plasma membrane by methyl-β-cyclodextrin abolished the FPRL-1-stimulated IKK phosphorylation, denoting the important role of lipid raft integrity in the FPRL-1 to IKK signaling. Furthermore, we demonstrated that in U87 cells, several signaling intermediates in the FPRL-1-IKK pathway including Gαi2, c-Src and ERK were constitutively localized at the raft microdomains. WKYMVM administration not only resulted in higher amount of ERK recruitment to the raft region, but also specifically stimulated raft-associated c-Src and ERK phosphorylations. Taken together, these results demonstrate that FPRL-1 is capable of activating NFκB signaling through IKK phosphorylation and this may serve as a useful therapeutical target for FPRL-1-related diseases.  相似文献   

4.
Abstract: Using guanine nucleotides, pertussis toxin, and specific antisera against the COOH-terminals of the α-subunits of Gi1/2, Gi3, and Go, the binding and biological response of the Y2 receptor (Y2R) for peptide YY (PYY) was probed in SMS-KAN neuroblastoma cells. The specific binding of radiolabeled PYY exhibited a single apparent dissociation constant, K D = 76 p M for intact cells and K D = 906 p M for permeabilized cells. However, other data suggested existence of multiple receptor affinity states. A shift in K D and a decrease in apparent number of binding sites ( B max) was observed in permeabilized cells when incubated with guanine nucleotides. By contrast, in membrane preparations guanine nucleotides induced only a decrease in B max. In intact cells, agonist exposure inhibited the intracellular accumulation of forskolin-stimulated cyclic AMP by 80% (IC50 = 420 n M ) compared with 94% inhibition (IC50 = 380 n M ) in permeabilized cells. In permeabilized cells, preincubation with antisera against αi1/2 and αi3 blocked the functional response of PYY, with anti-αi3 being the most potent; whereas anti-αo failed to affect the cyclic AMP levels. These results suggest that permeabilized SMS-KAN cells serve as a good model system for analysis of Y2R binding kinetics and functional response and that the Y2R interacts directly with several different Gis (but not Go).  相似文献   

5.
Abstract: Nociceptin/OFQ is the endogenous ligand for the G protein-coupled opioid receptor-like (ORL1) receptor. To elucidate the cellular functions of the ORL1 receptor, we examined its ability to interact with Gz and G16, two pertussis toxin (PTX)-insensitive G proteins that are known molecular partners for the opioid receptors. In HEK 293 cells transiently expressing the ORL1 and dopamine D1 receptors, nociceptin/OFQ dose-dependently inhibited dopamine-stimulated cyclic AMP (cAMP) accumulation in a PTX-sensitive manner. However, PTX failed to block the nociceptin/OFQ-induced inhibition of dopamine-stimulated cAMP accumulation in HEK 293 cells co-expressing the α-subunit of Gz. This result indicates functional interaction between the ORL1 receptor and Gz. A similar result was obtained with retinoic acid-differentiated SH-SY5Y cells, which endogenously express both the ORL1 receptor and Gz. When the ORL1 receptor was transiently co-expressed in COS-7 cells with the α-subunit of G16, nociceptin/OFQ dose-dependently stimulated the formation of inositol phosphates. Nociceptin-induced stimulation of phospholipase C was absolutely dependent on the co-expression of α16 and exhibited the appropriate ligand selectivity. In terms of its ability to interact with PTX-insensitive G proteins, the ORL1 receptor behaves very much like the opioid receptors.  相似文献   

6.
Abstract: "High 5" cells derived from Trichoplusia ni ovaries were infected with baculovirus bearing the cDNA of the mouse δ-opioid receptor. The maximal binding capacity for the narcotic antagonist [3H]naltrindole was 1.4 pmol/mg of membrane protein, and that for the agonist [3H][ d -penicillamine2, d -penicillamine5]enkephalin (DPDPE) was 0.3 pmol/mg. DPDPE proved highly potent in competing with its tritiated analogue at δ-receptors of NG108-15 hybrid cells and of High 5 and Sf9 insect cells. However, in insect cells the opioid was more than 100-fold less effective in competing with [3H]naltrindole as compared with the mammalian cells. This decline in potency was counteracted in a dose-dependent manner by exposure of High 5 membranes to the exogenous G protein Go, which increased the binding capacity for DPDPE. Functional studies revealed a dose-dependent inhibition (up to 30%) by opioids on forskolin-stimulated cyclic AMP synthesis, and this effect was potentiated by Go. Quantification of Gαo and Gαi disclosed striking differences between Sf9 and High 5 insect cells, both of which overexpressed the cloned δ-opioid receptor. Although no inhibitory G proteins were detected in membranes of Sf9 cells, High 5 cells contained 0.5 pmol of Gαo/mg of membrane protein, and a 20-fold higher concentration for Gαi. The distinct G-protein expression in insect cells may be considered an advantage for studying functions of G protein-coupled receptors.  相似文献   

7.
This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors.  相似文献   

8.
Abstract: Two cannabinoid receptors belonging to the superfamily of G protein-coupled membrane receptors have been identified and cloned: the neuronal cannabinoid receptor (CB1) and the peripheral cannabinoid receptor (CB2). They have been shown to couple directly to the Gi/o subclass of G proteins and to mediate inhibition of adenylyl cyclase upon binding of a cannabinoid agonist. In several cases, however, cannabinoids have been reported to stimulate adenylyl cyclase activity, although the mechanism by which they did so was unclear. With the cloning of nine adenylyl cyclase isozymes with various properties, including different sensitivities to αs, αi/o, and βγ subunits, it became important to assess the signaling pattern mediated by each cannabinoid receptor via the different adenylyl cyclase isozymes. In this work, we present the results of cotransfection experiments between the two types of cannabinoid receptors and the nine adenylyl cyclase isoforms. We found that independently of the method used to stimulate specific adenylyl cyclase isozymes (e.g., ionomycin, forskolin, constitutively active αs, thyroid-stimulating hormone receptor activation), activation of the cannabinoid receptors CB1 and CB2 inhibited the activity of adenylyl cyclase types I, V, VI, and VIII, whereas types II, IV, and VII were stimulated by cannabinoid receptor activation. The inhibition of adenylyl cyclase type III by cannabinoids was observed only when forskolin was used as stimulant. The activity of adenylyl cyclase type IX was inhibited only marginally by cannabinoids.  相似文献   

9.
Abstract: The μ-opioid receptor has recently been shown to stimulate phosphoinositide-specific phospholipase C via the pertussis toxin-sensitive G16 protein. Given the promiscuous nature of G16 and the high degree of resemblance of signaling properties of the three opioid receptors, both δ- and κ-opioid receptors are likely to activate G16. Interactions of δ- and κ-opioid receptors with G16 were examined by coexpressing the opioid receptors and Gα16 in COS-7 cells. The δ-selective agonist [ d -Pen2, d -Pen5]enkephalin potently stimulated the formation of inositol phosphates in cells coexpressing the δ-opioid receptor and Gα16. The δ-opioid receptor-mediated stimulation of phospholipase C was absolutely dependent on the coexpression of simeter for quality control of blood units and irradiators. 13.   Transfusion 1993 ; 33 : 898 – 901 . [PubMed link] 14.   Butson MJ , Yu PK , Cheung T , et al . Dosimetry of blood irradiation with radiochromic film. Transfus Med 1999 ; 9 : 205 – 8 . [PubMed link] 15.   Nath R , Biggs PJ , Ling CC , et al . AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45. Med Phys  相似文献   

10.
In several epidemiological studies, moderate ethanol consumption has been associated with reduced risks of cognitive decline or Alzheimer's dementia. Of potential relevance is that brain cultures preconditioned with moderate ethanol concentrations are resistant to neurotoxic Alzheimer's amyloid-β (Aβ) peptides. Using rat cerebellar mixed cultures we investigated whether certain membrane receptors were early 'sensors' in moderate ethanol preconditioning (MEP). In a 6-day MEP protocol (30 mM ethanol), neuroprotection from Aβ25–35 was undiminished by antagonism during the first 3 days of either adenosine A1 or Gαi/o protein-coupled receptors. However, similar cotreatment with memantine or DL-2-amino-5-phosphono-pentanoic acid (AP-5), antagonists of NMDA receptors (NMDAR), abolished neuroprotection, indicating key early involvement of this ionotropic glutamate receptor. Also in these cultures, directly activating NMDAR using subexcitotoxic NMDA preconditioning prevented Aβ neurotoxicity. By day 2 of MEP, we observed increased levels of NMDAR subunits NR1, NR2B, and NR2C that persisted through day 6. Interestingly, memantine co-exposure blocked elevations in the obligatory NR1 subunit. Furthermore, 2 days of MEP significantly increased two indicators of synaptic NMDAR localization, NR2B phospho-Tyr1472, and post-synaptic density 95 scaffolding protein. The results indicate that ethanol preconditioning-dependent neuroprotection is associated with early increases in NR subunits concomitant with enhancement of synaptic localization and activity of NMDAR.  相似文献   

11.
Little is known concerning coupling of cerebral GABAB receptors to G protein subtypes, and the influence of positive allosteric modulators (PAMs) has not been evaluated. These questions were addressed by an antibody-capture/scintillation proximity assay strategy. GABA concentration-dependently enhanced the magnitude of [35S]GTPγS binding to Gαo and, less markedly, Gαi1/3 in cortex, whereas Gq and Gs/olf were unaffected. ( R )-baclofen and SKF97581 likewise activated Gαo and Gαi1/3, expressing their actions more potently than GABA. Similar findings were acquired in hippocampus and cerebellum, and the GABAB antagonist, CGP55845A, abolished agonist-induced activation of Gαo and Gαi1/3 in all structures. The PAMs, GS39783, CGP7930 and CGP13501, inactive alone, enhanced efficacy and potency of agonist-induced [35S]GTPγS binding to Gαo in all regions, actions abolished by CGP55845A. In contrast, they did not modify efficacies at Gαi1/3. Similarly, in human embryonic kidney cells expressing GABAB(1a+2) or GABAB(1b+2) receptors, allosteric modulators did not detectably enhance efficacy of GABA at Gαi1/3, though they increased its potency. To summarise, GABAB receptors coupled both to Gαo and to Gαi, but not Gq and Gs/olf, in rat brain. PAMs more markedly enhanced efficacy of coupling to Go versus Gi1/3. It will be of interest to confirm these observations employing complementary techniques and to evaluate their potential therapeutic significance.  相似文献   

12.
Although alterations in μ-opioid receptor (μOR) signaling mediate excitatory effects of opiates in opioid tolerance, the molecular mechanism for the excitatory effect of acute low dose morphine, as it relates to μOR coupling, is presently unknown. A pronounced coupling of μOR to the α subunit of G inhibitory protein emerged in periaqueductal gray (PAG) from mice systemically administered with morphine at a dose producing acute thermal hyperalgesia. This coupling was abolished in presence of the selective μOR antagonist d -Phe–Cys–Tyr– d -Trp–Orn–Thr–Pen–Thr–NH2 administered at the PAG site, showing that the low dose morphine effect is triggered by μOR activated G inhibitory protein at supraspinal level. When Gβγ downstream signalling was blocked by intra-PAG co-administration of 2-(3,4,5-trihydroxy-6-oxoxanthen-9-yl)cyclohexane-1-carboxylic acid, a compound that inhibits Gβγ dimer-dependent signaling, a complete prevention of low dose morphine induced acute thermal hyperalgesia was obtained. Phospholipase C β3, an enzyme necessary to morphine hyperalgesia, was revealed to be associated with Gβγ in PAG. Although opioid administration induces a shift in μOR-G protein coupling from Gi to Gs after chronic administration, our data support that this condition is not realized in acute treatment providing evidence that a separate molecular mechanism underlies morphine induced acute excitatory effect.  相似文献   

13.
Abstract: Ethanol dependence and tolerance involve perturbation of GABAergic neurotransmission. Previous studies have demonstrated that ethanol treatment regulates the function and expression of GABAA receptors throughout the CNS. Conceivably, changes in receptor function may be associated with alterations of subunit composition. In the present study, a comprehensive (1–12 weeks) ethanol treatment paradigm was used to evaluate changes in GABAA receptor subunit expression in several brain regions including the cerebellum, cerebral cortex, ventral tegmental area (VTA) (a region implicated in drug reward/dependence), and the hippocampus (a region involved in memory/cognition). Expression of α1 and α5 subunits was regulated by ethanol in a region-specific and time-dependent manner. Following 2–4 weeks of administration, cortical and cerebellar α1 and α5 subunit immunoreactivity was reduced. In the VTA, levels of α1 subunit immunoreactivity were significantly decreased after 12 weeks but not 1–4 weeks of treatment. Hippocampal α1 subunit immunoreactivity and mRNA content were also significantly reduced after 12 but not after 4 weeks of treatment. In contrast, α5 mRNA content was increased in this brain region. These data indicate that chronic ethanol administration alters GABAA receptor subunit expression in the VTA and hippocampus, effects that may play a role in the abuse potential and detrimental cognitive effects of alcohol.  相似文献   

14.
In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Gα16gust44 and Gα15i3 link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo .  相似文献   

15.
Abstract: Although it is well-established that G protein-coupled receptor signaling systems can network with those of tyrosine kinase receptors by several mechanisms, the point(s) of convergence of the two pathways remains largely undelineated, particularly for opioids. Here we demonstrate that opioid agonists modulate the activity of the extracellular signal-regulated protein kinase (ERK) in African green monkey kidney COS-7 cells transiently cotransfected with μ-, δ-, or κ-opioid receptors and ERK1- or ERK2-containing plasmids. Recombinant proteins in transfected cells were characterized by binding assay or immunoblotting. On treatment with corresponding μ- ([ d -Ala2,Me-Phe4,Gly-ol5]enkephalin)-, δ- ([ d -Pen2, d -Pen5]enkephalin)-, or κ- (U69593)-selective opioid agonists, a dose-dependent, rapid stimulation of ERK1 and ERK2 activity was observed. This activation was inhibited by specific antagonists, suggesting the involvement of opioid receptors. Pretreatment of cells with pertussis toxin abolished ERK1 and ERK2 activation by agonists. Cotransfection of cells with dominant negative mutant N17-Ras or with a βγ scavenger, CD8-β-adrenergic receptor kinase-C, suppressed opioid stimulation of ERK1 and ERK2. When epidermal growth factor was used to activate ERK1, chronic (>2-h) opioid agonist treatment resulted in attenuation of the stimulation by the growth factor. This inhibition was blocked by the corresponding antagonists and CD8-β-adrenergic receptor kinase-C cotransfection. These results suggest a mechanism involving Ras and βγ subunits of Gi/o proteins in opioid agonist activation of ERK1 and ERK2, as well as opioid modulation of epidermal growth factor-induced ERK activity.  相似文献   

16.
17.
There is evidence to indicate that opioid compounds with mixed mu agonist/delta antagonist properties are analgesics with low propensity to produce tolerance and physical dependence. A chimeric peptide containing the potent and selective mu agonist H-Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]DALDA) (Dmt=2',6'-dimethyltyrosine) and the potent and selective delta antagonist H-Tyr-TicPsi[CH2-NH]Cha-Phe-OH (TICP[Psi]) (Cha=cyclohexylalanine), connected 'tail-to-tail' via a short linker, was synthesized using a combination of solid-phase and solution techniques. The resulting peptide, H-Dmt-->D-Arg-->Phe-->Lys-NH-CH2-CH2-NH-Phe<--Cha[NH-CH2]PsiTic<--Tyr-H, showed the expected mu agonist/delta antagonist profile in the guinea-pig ileum and mouse vas deferens assays. Its mu and delta receptor binding affinities were in the low nanomolar range, as determined in rat brain membrane binding assays.  相似文献   

18.
Abstract— Recent work indicates that the therapeutic action of lithium may be mediated through perturbation of postreceptor second messenger systems. To elucidate further the postreceptor cellular sites of action(s) of lithium, the effect of chronic lithium treatment on various components of the receptor-activated phosphoinositide pathway was investigated. We found that chronic administration of lithium (0.2% LiCI, 21 days) to adult male rats did not significantly affect phosphoinositide hydrolysis in cerebral cortical slices induced by carbachol (1 m M ) or NaF (10 m M ). Nor did the same treatment alter the carbachol (1 m M ) potentiation of guanosine 5'-(γ-thio)triphosphate (30 μ M ) stimulation of phosphoinositide hydrolysis (an index of receptor/G protein coupling) in cortical membranes. Immunoblotting studies revealed no changes in the levels of Gαq/11 immunoreactivity in the cortex after chronic lithium treatment. The levels of protein kinase C, as revealed by specific binding of [3H]phorbol dibutyrate ([3H]PDBu), were significantly reduced in the cytosolic fraction and increased in the particulate fraction of rat cortex after chronic lithium, whereas the K D of [3H]PDBu binding remained relatively constant. A small and insignificant decrease in the density of [3H]inositol 1,4,5-trisphosphate binding was also found in the cortex. The above data suggest that chronic lithium treatment affects neither the muscarinic cholinergic-linked phosphoinositide turnover nor the putative G protein α subunit (Gαq/11) responsible for phospholipase C activation. However, a possible translocation and activation of protein kinase C activity may be significant in the therapeutic effect of this mood-stabilizing agent.  相似文献   

19.
Abstract: The interactions of the atypical benzodiazepine 4'-chlorodiazepam (Ro 5-4864) with functionally expressed human GABAA receptor cDNAs were determined. Cotransfection of human α2, β1, and γ2 subunits was capable of reconstituting a 4'-chlorodiazepam recognition site as revealed by a dose-dependent potentiation of t -[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to the GABA-activated chloride channel. This site is found on GABAA receptor complexes containing sites for GABA agonist-like benzodiazepines and neuroactive steroids. The importance of the α subunit was further demonstrated as substitution of either α1 or α3 for the α2 subunit did not reconstitute a 4'-chlorodiazepam recognition site that was capable of modulating [35S]TBPS binding under the same experimental conditions. The 4'-chlorodiazepam modulatory site was shown to be distinct from the benzodiazepine site, but the phenylquinolines PK 8165 and PK 9084 produced effects similar to 4'-chlorodiazepam, consistent with the previous analysis of the 4'-chlorodiazepam site in brain homogenates. Further analysis of the subunit requirements revealed that coexpression of α2 and β1 alone reconstituted a 4'-chlorodiazepam recognition site. It is interesting, however, that the 4'-chlorodiazepam site was found to inhibit [35S]TBPS binding to the GABA-activated chloride channel. Thus, the 4'-chlorodiazepam site may be reconstituted with only the α and β polypeptides.  相似文献   

20.
Abstract: The expression of six mRNA species (α2, α3, α5, β2, β3, and γ2) encoding for GABAA receptor subunits was followed in cultured early postnatal cortical neurons by in situ hybridization histochemistry. In untreated control cultures it was found that these subunit mRNA expression profiles closely follow those seen during development in vivo. α3, α5, and β3 subunit expression declined, α2 expression increased, whereas β2 and γ2 subunit mRNA expression remained relatively constant. To test the hypothesis that GABAA receptor stimulation regulates these expression profiles, we tested the effect of a GABAA receptor positive modulator, allopregnanolone, and a GABAA receptor noncompetitive antagonist, tert -butylbicyclophosphorothionate (TBPS). It was found that allopregnanolone augmented the rate at which the α3, α5, or β3 subunit mRNA expression declined and prevented the increase in α2 subunit mRNA expression. As well, allopregnanolone down-regulated β2 subunit mRNA expression. TBPS, on the other hand, up-regulated α3, α5, β2, and β3 subunit mRNA expression. It also down-regulated the expression of α2 subunit mRNA. Both allopregnanolone and TBPS had no effect on γ2 subunit mRNA expression. These results imply that the developmental switchover of GABA receptor subunit mRNA expression is regulated by GABAA receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号