首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Knotted-like homeobox (knox) genes constitute a gene family in plants. Class I knox genes are expressed in shoot apical meristems, and (with notable exceptions) not in lateral organ primordia. Class II genes have more diverse expression patterns. Loss and gain of function mutations indicate that knox genes are important regulators of meristem function. Gene duplication has contributed to the evolution of families of homeodomain proteins in metazoans. We believe that similar mechanisms have contributed to the diversity of knox gene function in plants. Knox genes may have contributed to the evolution of compound leaves in tomato and could be involved in the evolution of morphological traits in other species. Alterations in cis-regulatory regions in some knox genes correlate with novel patterns of gene expression and distinctive morphologies. Preliminary data from the analysis of class I knox gene expression illustrates the evolution of complex patterns of knox expression is likely to have occurred through loss and gain of domains of gene expression.  相似文献   

2.
    
《Current biology : CB》2020,30(10):1893-1904.e4
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   

3.
The indeterminate growth pattern displayed by shoots is mediated by the proper maintenance of the shoot meristem.Meristem maintenance is dependent upon the balance of stem cell perpetuation in the cent...  相似文献   

4.
  相似文献   

5.
高等植物成花基因的研究   总被引:14,自引:0,他引:14  
杨传平  刘桂丰  魏志刚 《遗传》2002,24(3):379-384
高等植物的成花可分为两个阶段:由茎顶端分生组织转变成花分生组织和花器官的形成。前者主要受成花计时基因的控制,而后一阶段主要由植物的同源(异型)框基因调控。本文综述了近年来对植物成花调控基因的研究,并着重对第一阶段成花基因的功能、它们间的相互作用和特点进行了总结。Abstract:Plant flower can be divided into two phases——from stem apex meristem tissue into flower meristem tissue and floral apparatus.The flower time genes control the flower development and the homologous genes control flower apparatus identify.This paper summarizes recent studies on plant flower and emphasizes on the first phase flower control genes,theirs interaction and function,characteristic of the homologous genes.  相似文献   

6.
7.
8.
9.
10.
    
Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold‐dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non‐vernalised bulbs invariably remained at a vegetative stage. However, small non‐vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production.  相似文献   

11.
    
Possible links between plant defense responses and morphogenesis have been postulated, but their molecular nature remains unknown. Here, we introduce the Arabidopsis semi-dominant mutant uni-1D with morphological defects. UNI encodes a coiled-coil nucleotide-binding leucine-rich-repeat protein that belongs to the disease resistance (R) protein family involved in pathogen recognition. The uni-1D mutation causes the constitutive activation of the protein, which is stabilized by the RAR1 function in a similar way as in other R proteins. The uni-1D mutation induces the upregulation of the Pathogenesis-related gene via the accumulation of salicylic acid, and evokes some of the morphological defects through the accumulation of cytokinin. The rin4 knock-down mutation, which causes the constitutive activation of two R proteins, RPS2 and RPM1, induces an upregulation of cytokinin-responsive genes and morphological defects similar to the uni-1D mutation, indicating that the constitutive activation of some R proteins alters morphogenesis through the cytokinin pathway. From these data, we propose that the modification of the cytokinin pathway might be involved in some R protein-mediated responses.  相似文献   

12.
    
During post-embryonic shoot development, new meristems are initiated in the axils of leaves. They produce secondary axes of growth that determine morphological plasticity and reproductive efficiency in higher plants. In this study, we describe the role of the bHLH-protein-encoding Arabidopsis gene REGULATOR OF AXILLARY MERISTEM FORMATION (ROX), which is the ortholog of the branching regulators LAX PANICLE1 (LAX1) in rice and barren stalk1 (ba1) in maize. rox mutants display compromised axillary bud formation during vegetative shoot development, and combination of rox mutants with mutations in RAX1 and LAS, two key regulators of axillary meristem initiation, enhances their branching defects. In contrast to lax1 and ba1, flower development is unaffected in rox mutants. Over-expression of ROX leads to formation of accessory side shoots. ROX mRNA accumulates at the adaxial boundary of leaf and flower primordia. However, in the vegetative phase, axillary meristems initiate after ROX expression has terminated, suggesting an indirect role for ROX in meristem formation. During vegetative development, ROX expression is dependent on RAX1 and LAS activity, and all three genes act in concert to modulate axillary meristem formation.  相似文献   

13.
  总被引:2,自引:0,他引:2  
  相似文献   

14.
  总被引:1,自引:0,他引:1  
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

15.
    
Members of the CENTRORADIALIS (CEN)/TERMINAL FLOWER 1 (TFL1) subfamily control shoot meristem identity, and loss‐of‐function mutations in both monopodial and sympodial herbaceous plants result in dramatic changes in plant architecture. We studied the degree of conservation between herbaceous and woody perennial plants in shoot system regulation by overexpression and RNA interference (RNAi)‐mediated suppression of poplar orthologs of CEN, and the related gene MOTHER OF FT AND TFL 1 (MFT). Field study of transgenic poplars (Populus spp.) for over 6 years showed that downregulation of PopCEN1 and its close paralog, PopCEN2, accelerated the onset of mature tree characteristics, including age of first flowering, number of inflorescences and proportion of short shoots. Surprisingly, terminal vegetative meristems remained indeterminate in PopCEN1‐RNAi trees, suggesting the possibility that florigen signals are transported to axillary mersitems rather than the shoot apex. However, the axillary inflorescences (catkins) of PopCEN1‐RNAi trees contained fewer flowers than did wild‐type catkins, suggesting a possible role in maintaining the indeterminacy of the inflorescence apex. Expression of PopCEN1 was significantly correlated with delayed spring bud flush in multiple years, and in controlled environment experiments, 35S::PopCEN1 and RNAi transgenics required different chilling times to release dormancy. Considered together, these results indicate that PopCEN1/PopCEN2 help to integrate shoot developmental transitions that recur during each seasonal cycle with the age‐related changes that occur over years of growth.  相似文献   

16.
17.
In a determinate meristem, such as a floral meristem, a genetically determined number of organs are produced before the meristem is terminated. In rice, iterative formation of organs during flower development with defects in meristem determinacy, classically called ‘proliferation’, is caused by several mutations and observed in dependence on environmental conditions. Here we report that overexpression of several JAZ proteins, key factors in jasmonate signaling, with mutations in the Jas domains causes an increase in the numbers of organs in florets, aberrant patterns of organ formation and repetitious organ production in spikelets. Our results imply that JAZ factors modulate mechanisms that regulate meristem functions during spikelet development.  相似文献   

18.
  总被引:4,自引:0,他引:4  
  相似文献   

19.
Small RNAs: Big Impact on Plant Development   总被引:1,自引:0,他引:1  
  相似文献   

20.
Prairie cordgrass (Spartina pectinata Link.) is indigenous throughout most of the continental United States and Canada to 60°N latitude and is well suited to marginal land too wet for maize (Zea mays L.) and switchgrass (Panicum virgatum L.). Evaluations of prairie cordgrass in Europe and North America indicated it has high potential for biomass production, relative to switchgrass, in short‐season areas. Our objective was to describe morphology and biomass production and partitioning in mature stands of ‘Red River’ prairie cordgrass and determine biomass production of natural populations on marginal land. This study was conducted from 2000 to 2008 in eastern South Dakota. Mean biomass production of mature stands of Red River was 12.7 Mg ha?1. Leaves composed >88% of the biomass, and 60% of the tillers had no internodes. Belowground biomass to a depth of approximately 25 cm, not including roots, was 21 Mg ha?1. Tiller density ranged from 683 tillers m?2 for a 10‐year‐old stand to 1140 tillers m?2 for a 4‐year‐old stand. The proaxis was composed of about eight phytomers, with rhizomes originating at proximal nodes and erect tillers at distal nodes. Vegetative propagation was achieved by both phalanx and guerilla growth. Differences among natural populations for biomass were expressed on gravelly marginal land. However, production, averaged across populations, was low (1.37 Mg ha?1) and comparable to ‘Cave‐In‐Rock’ switchgrass (1.67 Mg ha?1) over a 4‐year period. The large carbon storage capacity of prairie cordgrass in proaxes and rhizomes makes it useful for carbon sequestration purposes. Prairie cordgrass should be compared with switchgrass and other C4 perennial grasses along environmental gradients to determine optimum landscape positions for each and to maximize bioenergy production and minimize inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号