首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of the planar cell polarity proteins Vang12, frizzled-3, Vang11, and Celsr1 in the rat incisors was examined using immunocytochemistry. The results showed that Vang12 was localized at two regions of the Tomes' processes of inner enamel-secretory ameloblasts in rat incisors: a proximal and a distal region. In contrast, frizzled-3 was localized at adherens junctions of the proximal and distal areas of inner enamel- and outer enamel-secretory ameloblasts, where N-cadherin and β-catenin were localized. frizzled-3 was also localized in differentiating inner enamel epithelial cells. Vang11 was localized sparsely in differentiating preameloblasts and extensively at the cell boundary of stratum intermedium. Celsr1 was not localized in ameloblasts but localized in odontoblasts extensively. These results suggest the involvement of planar cell polarity proteins in odontogenesis.  相似文献   

2.
《The Journal of cell biology》1986,103(4):1451-1464
Intercellular adherens junctions between cultured lens epithelial cells are highly Ca2+-dependent and are readily dissociated upon chelation of extracellular Ca2+ ions. Addition of Ca2+ to EGTA-treated cells results in the recovery of cell-cell junctions including the reorganization of adherens junction-specific cell adhesion molecule (A-CAM), vinculin, and actin (Volk, T., and B. Geiger, 1986, J. Cell Biol., 103:000-000). Incubation of cells during the recovery phase with Fab' fragments of anti-A-CAM specifically inhibited the re-formation of cell-cell adherens junctions. This inhibition was accompanied by remarkable changes in microfilament organization manifested by an apparent deterioration of stress fibers and the appearance of fragmented actin bundles throughout the cytoplasm. Incubation of EGTA-dissociated cells with intact divalent anti-A-CAM antibodies in normal medium had no apparent inhibitory effect on junction formation and did not affect the assembly of actin microfilament bundles. Moreover, adherens junctions formed in the presence of the divalent antibodies became essentially Ca2+-independent, suggesting that cell-cell adhesion between them was primarily mediated by the antibodies. These studies suggest that A-CAM participates in intercellular adhesion in adherens-type junctions and point to its involvement in microfilament bundle assembly.  相似文献   

3.
After tooth enamel has been secreted it undergoes maturation or hardening. This process is mediated by ruffled and smooth-ended ameloblasts and associated papillary layer cells. The cells of the papillary layer are characterized by large numbers of mitochondria, coated vesicles, microvilli, and gap junctions. These features have led numerous investigators to speculate that the papillary layer is an ion-transporting epithelium. We have conducted freeze-fracture studies of the rat papillary layer in order to better characterize the surface features of these cells. The cell membranes of the papillary cells contained large numbers of intramembrane particles of various sizes ranging from 4 to 9 nm in diameter. Gap junctions were present at the cell surface and in the cytoplasm in the form of annular gap junctions. The intramembrane particles or connexons of both types of gap junctions were about 8-9 nm wide and were either packed randomly or present in the so-called 'crystallized' state. At the interface between smooth-ended ameloblasts and papillary layer cells, a well-developed zonula occludens was present along the basal surfaces of the ameloblasts and several large gap junctions were formed between the two cell types. The capillary network associated with the papillary layer was characterized by a thin endothelium containing large numbers of fenestrations.  相似文献   

4.
We examined the roles of the extracellular domains of a gap junction protein and a cell adhesion molecule in gap junction and adherens junction formation by altering cell interactions with antibody Fab fragments. Using immunoblotting and immunocytochemistry we demonstrated that Novikoff cells contained the gap junction protein, connexin43 (Cx43), and the cell adhesion molecule, A-CAM (N-cadherin). Cells were dissociated in EDTA, allowed to recover, and reaggregated for 60 min in media containing Fab fragments prepared from a number of antibodies. We observed no cell-cell dye transfer 4 min after microinjection in 90% of the cell pairs treated with Fab fragments of antibodies for the first or second extracellular domain of Cx43, the second extracellular domain of connexin32 (Cx32) or A-CAM. Cell-cell dye transfer was detected within 30 s in cell pairs treated with control Fab fragments (pre-immune serum, antibodies to the rat major histocompatibility complex or the amino or carboxyl termii of Cx43). We observed no gap junctions by freeze-fracture EM and no adherens junctions by thin section EM between cells treated with the Fab fragments that blocked cell-cell dye transfer. Gap junctions were found on approximately 50% of the cells in control samples using freeze-fracture EM. We demonstrated with reaggregated Novikoff cells that: (a) functional interactions of the extracellular domains of the connexins were necessary for the formation of gap junction channels; (b) cell interactions mediated by A-CAM were required for gap junction assembly; and (c) Fab fragments of antibodies for A-CAM or connexin extracellular domains blocked adherens junction formation.  相似文献   

5.
Actin has many diverse functions in the outer retina. To help elucidate its organization in this area, we have investigated the extent of its association with the actin cross-linking protein alpha-actinin. Ultrathin sections of chicken retina were double-immunolabelled with monospecific antibodies against actin and alpha-actinin. The highest relative amount of alpha-actinin to actin label was measured in the adherens junctions between the individual retinal pigmented epithelial (RPE) cells and between the photoreceptor and Mueller cells; in the photoreceptor myoid; and in the RPE basal microvilli. The lowest amount was in the Mueller cell microvilli, the RPE apical processes, and in the photoreceptor ellipsoid. It is likely that the areas containing the highest ratio of alpha-actinin to actin labelling are where the actin filaments are most highly cross-linked into bundles and linked to the plasma membrane by alpha-actinin. Actin filaments terminate in these areas, and, except for the myoid region, they are involved in cell-cell or cell-substrate adherens junctions.  相似文献   

6.
Adhering junctions are generally grouped into desmosomes and adherens junctions based on their ultrastructural appearance and molecular composition. The armadillo-protein plakoglobin is common to both types of junctions, which are otherwise composed of mutually exclusive proteins. This view is based on observations in epithelial tissues but cannot easily be transferred to other cell types and tissues, as has become apparent during the last decade with the identification of new junctional proteins and the investigation of further non-epithelial junctions. Using a broad array of well-characterized specific antibodies against key junctional proteins in immunoblot reactions, high-resolution double-label laser scanning confocal microscopy, and immunoelectron microscopy, we describe a new type of adherens junction in human meningiomas and the human meningioma cell line HBL-52. This novel junction has a unique composition of proteins not found in any other tissue; it contains the desmosomal armadillo-protein plakophilin 2 together with the classic proteins of “epithelial” adherens junctions, i.e., E-cadherin (in some instances replaced by N-cadherin), alpha-catenin, beta-catenin, plakoglobin, and p120ctn. Ultrastructurally, it is formed between two or three neighboring cells. For pragmatic reasons, we suggest the name “meningeal junction” for this new structure. All authors declare the absence of conflicts of interest.  相似文献   

7.
In developing mammalian telencephalon, the loss of adherens junctions and cell cycle exit represent crucial steps in the differentiation of neuroepithelial cells into neurons, but the relationship between these cellular events remains obscure. Atypical protein kinase C (aPKC) is known to contribute to junction formation in epithelial cells and to cell fate determination for Drosophila neuroblasts. To elucidate the functions of aPKClambda, one out of two aPKC members, in mouse neocortical neurogenesis, a Nestin-Cre mediated conditional gene targeting system was employed. In conditional aPKClambda knockout mice, neuroepithelial cells of the neocortical region lost aPKClambda protein at embryonic day 15 and demonstrated a loss of adherens junctions, retraction of apical processes and impaired interkinetic nuclear migration that resulted in disordered neuroepithelial tissue architecture. These results are evidence that aPKClambda is indispensable for the maintenance of adherens junctions and may function in the regulation of adherens junction integrity upon differentiation of neuroepithelial cells into neurons. In spite of the loss of adherens junctions in the neuroepithelium of conditional aPKClambda knockout mice, neurons were produced at a normal rate. Therefore, we concluded that, at least in the later stages of neurogenesis, regulation of cell cycle exit is independent of adherens junctions.  相似文献   

8.
Isolation of cell-to-cell adherens junctions from rat liver   总被引:23,自引:18,他引:5       下载免费PDF全文
A new isolation procedure for cell-to-cell adherens junctions has been developed using rat liver. From the bile canaliculi-enriched fraction obtained by homogenization of the liver and sucrose gradient centrifugation, the fraction rich in adherens junction was recovered by detergent treatment followed by sucrose gradient centrifugation. Light and electron microscopy revealed that this final fraction was mainly composed of the belt-like adherens junctions with their associated short actin filaments. Biochemical and immunological analyses have shown that vinculin is highly enriched in this fraction. Considering that vinculin is known to be localized in the cell-to-cell adherens junctions, we can conclude that we have succeeded in isolating the cell-to-cell adherens junctions. Furthermore, the constituents of the undercoat (dense layer underlying the membrane) of adherens junctions were selectively extracted from the fraction rich in junctions. Upon SDS electrophoresis of this extract, 10 polypeptides including vinculin, alpha-actinin, and actin were dominant. The results obtained are discussed with special reference to the molecular organization of the undercoats of cell-to-cell adherens junctions.  相似文献   

9.
10.
Summary The ultrastructure and distribution of adherens junctions in the intact adult lens of human, chicken, dove, rat, and rainbow trout were studied with thin-section electron microscopy, using an improved fixation containing a mixture of glutaraldehyde, lysine, and tannic acid. The nature of adherens junctions in the fiber-cells of the lens was also verified by immunofluorescence and rhodamine-phalloidin labelings for vinculin and actin. Electron microscopy revealed that adherens junctions of the lens were different ultrastructurally from the desmosomes found only between the lateral epithelial cells of the lens. The adherens junctions had the same structural characteristics as the zonulae adherentes, except that they were macular contacts, not belts. However, cross bridges were evident within the interspace of the junctions. Adherens junctions were located between the fiber-cells, between the epithelial cells and fiber-cells, and between the epithelial cells. They had a characteristic distribution in the intersections where three hexagonal fiber-cells met, as seen in cross-sections in all species studied. In addition, adherens junctions and associated actin were found distributed randomly along the entire cell membranes of both wide and narrow sides of cortical fiber-cells in the human, chicken, and dove lenses which have good accomodating capability. However, in the poorly-accomodating lenses of rat and fish, these junctions were seen predominantly on the narrow sides and at the regions of the wide sides that were very close to the intersections. It is suggested that adherens junctions and associated actin microfilaments are involved in stabilizing the structural integrity of lens cells during accomodation and in preserving a specific lens shape.  相似文献   

11.
T Volk  O Cohen  B Geiger 《Cell》1987,50(6):987-994
Cultured cells from either chicken lens or liver plated on solid substrates form flat epithelial sheets with adherens-type junctions between them. In lens cells these junctions contain A-CAM, while the same type of intercellular junctions in liver cells contain another cell adhesion molecule, L-CAM. Coculturing of lens and liver cells in the same dish resulted in the formation of mixed (heterotypic) adherens junctions. Double immunofluorescent labeling for both A-CAM and L-CAM indicated that the mixed junctions contained both molecules, each of which was present on one of the two partner cells. Moreover, the formation of the heterotypic junctions could be effectively inhibited by both anti-A-CAM and anti-L-CAM antibodies. It has thus been proposed that A-CAM and L-CAM share significant functional homology and may be involved in heterophilic interactions leading to the establishment of molecularly and cellularly asymmetrical adherens-type junctions.  相似文献   

12.
Artificial adherens junctions were reconstituted in vitro by assembly of cadherin fragments at the surfaces of liposomes. The architecture of the adherens junctions was revealed by cryo-electron microscopy (cryo-EM). The formation of these artificial adherens junctions was shown to result from the two-dimensional (2D) self-assembly of cadherin fragments at membrane surfaces. The molecular architecture of the junctions was resolved by combining information from several cryo-EM views. This study concludes to the 2D ordered nature of the cadherin assembly and shows that the minimal information required to build up an adherens junction is contained within the extracellular moiety of cadherin molecules.  相似文献   

13.
Tyrosine phosphorylation of cytoskeletal proteins at adhesive junctions has been speculated to play a role in the regulation of cell signaling at these sites. Previously, monoclonal antibodies were generated against phosphotyrosine-containing proteins from Rous sarcoma virus-transformed chick embryo fibroblasts, resulting in two antibodies which recognized antigens of 76 and 215 kDa that localized to focal contacts. We have now localized the 215-kDa antigen to a number of adhesive junctions in vivo, including the zonula adherens, intercalated discs, and myotendinous and neuromuscular junctions. In sections of skeletal muscle and in isolated myofibrils, the 215-kDa protein was localized to the I-band. By immunoprecipitation and immunoblot analysis, we determined that the 215-kDa antigen cross-reacts with a polyclonal anti-tensin antibody.  相似文献   

14.
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.  相似文献   

15.
《The Journal of cell biology》1993,120(5):1159-1167
The sarcolemma of the smooth muscle cell displays two alternating structural domains in the electron microscope: densely-staining plaques that correspond to the adherens junctions and intervening uncoated regions which are rich in membrane invaginations, or caveolae. The adherens junctions serve as membrane anchorage sites for the actin cytoskeleton and are typically marked by antibodies to vinculin. We show here by immunofluorescence and immunoelectron microscopy that dystrophin is specifically localized in the caveolae-rich domains of the smooth muscle sarcolemma, together with the caveolae-associated molecule caveolin. Additional labeling experiments revealed that beta 1 integrin and fibronectin are confined to the adherens junctions, as indicated by their codistribution with vinculin and tensin. Laminin, on the other hand, is distributed around the entire cell perimeter. The sarcolemma of the smooth muscle cell is thus divided into two distinct domains, featuring different and mutually exclusive components. This simple bipartite domain organization contrasts with the more complex organization of the skeletal muscle sarcolemma: smooth muscle thus offers itself as a useful system for localizing, among other components, potential interacting partners of dystrophin.  相似文献   

16.
Endothelial cells approaching confluence exhibit marked decreases in tyrosine phosphorylation of receptor tyrosine kinases and adherens junctions proteins, required for cell cycle arrest and adherens junctions stability. Recently, we demonstrated a close correlation in endothelial cells between membrane cholesterol and tyrosine phosphorylation of adherens junctions proteins. Here, we probe the mechanistic basis for this correlation. We find that as endothelial cells reach confluence, the tyrosine phosphatase SHP-2 is recruited to a low-density membrane fraction in a cholesterol-dependent manner. Binding of SHP-2 to this fraction was not abolished by phenyl phosphate, strongly suggesting that this binding was mediated by other regions of SHP-2 beside its SH2 domains. Annexin II, previously implicated in cholesterol trafficking, was associated in a complex with SHP-2, and both proteins localized to adhesion bands in confluent endothelial monolayers. These studies reveal a novel, cholesterol-dependent mechanism for the recruitment of signaling proteins to specific plasma membrane domains via their interactions with annexin II.  相似文献   

17.
The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  相似文献   

18.
Molecular architecture of adherens junctions.   总被引:28,自引:0,他引:28  
Adherens junctions are composed of a cadherin-catenin complex and its associated proteins. Recently, an increasing number of novel members of adherens junctions, including membrane and PDZ proteins, have been reported. Interactions among these components in adherens junctions seem to be dynamically regulated during the formation of adherens junction complexes in epithelial cells.  相似文献   

19.
Endothelial cell-to-cell junctions are vital for the formation and integrity of blood vessels. The main adhesive junctional complexes in endothelial cells, adherens junctions and tight junctions, are formed by transmembrane adhesive proteins that are linked to intracellular signalling partners and cytoskeletal-binding proteins. Gene inactivation and blocking antibodies in mouse models have revealed some of the functions of the individual junctional components in vivo, and are increasing our understanding of the functional role of endothelial cell junctions in angiogenesis and vascular homeostasis. Adherens-junction organization is required for correct vascular morphogenesis during embryo development. By contrast, the data available suggest that tight-junction proteins are not essential for vascular development but are necessary for endothelial barrier function.  相似文献   

20.
Immunogold cytochemical procedure was used to study the localization at the ultrastructural level of interendothelial junction-associated protein molecules in the human brain blood microvessels, representing the anatomic site of the blood-brain barrier (BBB). Ultrathin sections of Lowicryl K4M-embedded biopsy specimens of human cerebral cortex obtained during surgical procedures were exposed to specific antibodies, followed by colloidal gold-labeled secondary antibodies. All tight junction-specific integral membrane (transmembrane) proteins--occludin, junctional adhesion molecule (JAM-1), and claudin-5--as well as peripheral zonula occludens protein (ZO-1) were highly expressed. Immunoreactivity of the adherens junction-specific transmembrane protein VE-cadherin was of almost similar intensity. Immunolabeling of the adherens junction-associated peripheral proteins--alpha-catenin, beta-catenin, and p120 catenin--although positive, was evidently less intense. The expression of gamma-catenin (plakoglobin) was considered questionable because solitary immunosignals (gold particles) appeared in only a few microvascular profiles. Double labeling of some sections made possible to observe strict colocalization of the junctional molecules, such as occludin and ZO-1 or JAM-1 and VE-cadherin, in the interendothelial junctions. We found that in human brain microvessels, the interendothelial junctional complexes contain molecular components specific for both tight and adherens junctions. It is assumed that the data obtained can help us find the immunodetectable junctional molecules that can serve as sensitive markers of normal or abnormal function of the BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号