首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria from various organisms, especially plants, fungi and many bacteria contain so-called alternative NADH:ubiquinone oxidoreductases that catalyse the same redox reaction as respiratory chain complex I, but do not contribute to the generation of transmembrane proton gradients. In eucaryotes, these enzymes are associated with the mitochondrial inner membrane, with their NADH reaction site facing either the mitochondrial matrix (internal alternative NADH:ubiquinone oxidoreductases) or the cytoplasm (external alternative NADH:ubiquinone oxidoreductases). Some of these enzymes also accept NADPH as substrate, some require calcium for activity. In the past few years, the characterisation of several alternative NADH:ubiquinone oxidoreductases on the DNA and on the protein level, of substrate specificities, mitochondrial import and targeting to the mitochondrial inner membrane has greatly improved our understanding of these enzymes. The present review will, with an emphasis on yeast model systems, illuminate various aspects of the biochemistry of alternative NADH:ubiquinone oxidoreductases, address recent developments and discuss some of the questions still open in the field.  相似文献   

2.
Periplasmic protein thiol:disulfide oxidoreductases of Escherichia coli   总被引:1,自引:0,他引:1  
Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli.  相似文献   

3.
We performed phylogenomic analysis of the catalytic core of NADH:quinone oxidoreductases of type 1 (NDH-1). Analysis of phylogenetic trees, as constructed for the core subunits of NDH-1, revealed fundamental differences in their topologies. In the case of four putatively homologous ion-carrying membrane subunits, the trees for the NuoH and NuoN subunits contained separate archaeal clades, whereas subunits NuoL and NuoM were characterized by multiple archaeal clades spread among bacterial branches. Large, separate clades, which united sequences belonging to different archaeal subdomains, were also found for cytoplasmic subunits NuoD and NuoB, homologous to the large and small subunits of nickel-iron hydrogenases. A smaller such clade was also shown for subunit NuoC. Based on these data, we suggest that the ancestral NDH-1 complex could be present already at the stage of the Last Universal Cellular Ancestor (LUCA). Ancestral forms of membrane subunits NuoN and NuoH and cytoplasmic subunits NuoD, NuoB, and, perhaps NuoC, may have formed a membrane complex that operated as an ion-translocating membrane hydrogenase. After the complex attained the ability to reduce membrane quinones, gene duplications could yield the subunits NuoL and NuoM, which enabled translocation of additional ions.  相似文献   

4.
Pyruvate:ferredoxin oxidoreductase and 2-oxoglutarate:ferredoxin oxidoreductase were obtained from cell-free extracts of Halobacterium halobium as homogeneous proteins after ammonium sulfate precipitation, salting-out chromatography with ammonium sulfate on unsubstituted agarose, gel filtration and chromatography on hydroxyapatite. The respective molecular weights are 256000 and 248000. Both enzymes consist of two sets of non-identical subunits of Mr 86000 and 42000 in the case of the pyruvate-degrading enzyme and of 88000 and 36000 in the case of the 20 -oxogluatarate-degrading enzyme. Analyses indicate that an intact enzyme molecule contains two [4 Fe-4S]2 + (2 + , 1+) clusters and two molecules of thiamin diphosphate. Flavin nucleotides, lipoic acid and pantetheine are absent. Thus the enzymes are very similar to the 2-oxoacid:ferredoxin oxidoreductases from fermentative and photosynthetic anaerobes described previously, but are clearly different from the 2-oxoacid dehydrogenase multienzyme complexes which commonly occur in anaerobic organisms.  相似文献   

5.
A modified purification method for bacterial luciferases and NAD(P)H:FMN oxidoreductases is described which uses FMN-Sepharose alone or coupled to DEAE ion exchange chromatography for the simultaneous purification of luciferase and the various oxidoreductases from Vibrio harveyi, a bright mutant of Vibrio harveyi, Vibrio fischeri, and Photobacterium phosphoreum. This purification method is compared with DEAE-Sepharose CI 6B fractionations from these organisms. Both methods allow the separation of oxidoreductases specific for either NADH or NADPH. The use of FMN-Sepharose coupled to DEAE-Sepharose fractionation allows the isolation of highly purified enzymes. Lacking interfering factors, these are very suitable for various analytical applications based on bacterial bioluminescence enzymes. The partially purified enzymes from the affinity column have higher specific activities than those obtained using DEAE-Sepharose.  相似文献   

6.
A group of bacterial flavoproteins related to thioredoxin reductase contain an additional approximately 200-amino-acid domain including a redox-active disulfide center at their N-termini. These flavoproteins, designated NADH:peroxiredoxin oxidoreductases, catalyze the pyridine-nucleotide-dependent reduction of cysteine-based peroxidases (e.g. Salmonella typhimurium AhpC, a member of the peroxiredoxin family) which in turn reduce H2O2 or organic hydroperoxides. These enzymes catalyze rapid electron transfer (kcat > 165 s-1) through one tightly bound FAD and two redox-active disulfide centers, with the N-terminal-most disulfide center acting as a redox mediator between the thioredoxin-reductase-like part of these proteins and the peroxiredoxin substrates. A chimeric protein with the first 207 amino acids of S. typhimurium AhpF attached to the N-terminus of Escherichia coli thioredoxin reductase exhibits very high NADPH:peroxiredoxin oxidoreductase and thioredoxin reductase activities. Catalytic turnover by NADH:peroxiredoxin oxidoreductases may involve major domain rotations, analogous to those proposed for bacterial thioredoxin reductase, and cycling of these enzymes between two electron-reduced (EH2) and four electron-reduced (EH4) redox states.  相似文献   

7.
[NiFe] hydrogenases are well-characterized enzymes that have a key function in the H2 metabolism of various microorganisms. In the recent years a subfamily of [NiFe] hydrogenases with unique properties has been identified. The members of this family form multisubunit membrane-bound enzyme complexes composed of at least four hydrophilic and two integral membrane proteins. These six conserved subunits, which built the core of these hydrogenases, have closely related counterparts in energy-conserving NADH:quinone oxidoreductases (complex I). However, the reaction catalyzed by these hydrogenases differs significantly from the reaction catalyzed by complex I. For some of these hydrogenases the physiological role is to catalyze the reduction of H+ with electrons derived from reduced ferredoxins or poly-ferredoxins. This exergonic reaction is coupled to energy conservation by means of electron-transport phosphorylation. Other members of this hydrogenase family mainly function to provide the cell with reduced ferredoxin with H2 as electron donor in a reaction driven by reverse electron transport. As complex I these hydrogenases function as ion pumps and have therefore been designated as energy-converting [NiFe] hydrogenases.  相似文献   

8.
Membrane-bound succinate dehydrogenases (succinate:quinone reductases, SQR) and fumarate reductases (quinol:fumarate reductases, QFR) couple the oxidation of succinate to fumarate to the reduction of quinone to quinol and also catalyse the reverse reaction. SQR (respiratory complex II) is involved in aerobic metabolism as part of the citric acid cycle and of the aerobic respiratory chain. QFR is involved in anaerobic respiration with fumarate as the terminal electron acceptor, and is part of an electron transport chain catalysing the oxidation of various donor substrates by fumarate. QFR and SQR complexes are collectively referred to as succinate:quinone oxidoreductases (EC 1.3.5.1), have very similar compositions and are predicted to share similar structures. The complexes consist of two hydrophilic and one or two hydrophobic, membrane-integrated subunits. The larger hydrophilic subunit A carries covalently bound flavin adenine dinucleotide and subunit B contains three iron-sulphur centres. QFR of Wolinella succinogenes and SQR of Bacillus subtilis contain only one hydrophobic subunit (C) with two haem b groups. In contrast, SQR and QFR of Escherichia coli contain two hydrophobic subunits (C and D) which bind either one (SQR) or no haem b group (QFR). The structure of W. succinogenes QFR has been determined at 2.2 A resolution by X-ray crystallography (C.R.D. Lancaster, A. Kr?ger, M. Auer, H. Michel, Nature 402 (1999) 377-385). Based on this structure of the three protein subunits and the arrangement of the six prosthetic groups, a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b to the site of fumarate reduction and a mechanism of fumarate reduction was proposed. The W. succinogenes QFR structure is different from that of the haem-less QFR of E. coli, described at 3.3 A resolution (T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees, Science 284 (1999) 1961-1966), mainly with respect to the structure of the membrane-embedded subunits and the relative orientations of soluble and membrane-embedded subunits. Also, similarities and differences between QFR transmembrane helix IV and transmembrane helix F of bacteriorhodopsin and their implications are discussed.  相似文献   

9.
Succinate dehydrogenase and fumarate reductase from Escherichia coli.   总被引:2,自引:0,他引:2  
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.  相似文献   

10.
《BBA》2023,1864(1):148916
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.  相似文献   

11.
Previous studies have shown that the hyperthermophilic archaeon Pyrococcus furiosus contains four distinct cytoplasmic 2-ketoacid oxidoreductases (ORs) which differ in their substrate specificities, while the hyperthermophilic bacterium Thermotoga maritima contains only one, pyruvate ferredoxin oxidoreductase (POR). These enzymes catalyze the synthesis of the acyl (or aryl) coenzyme A derivative in a thiamine PPi-dependent oxidative decarboxylation reaction with reduction of ferredoxin. We report here on the molecular analysis of the POR (por) and 2-ketoisovalerate ferredoxin oxidoreductase (vor) genes from P. furiosus and of the POR gene from T. maritima, all of which comprise four different subunits. The operon organization for P. furiosus POR and VOR was porG-vorDAB-porDAB, wherein the gamma subunit is shared by the two enzymes. The operon organization for T. maritima POR was porGDAB. The three enzymes were 46 to 53% identical at the amino acid level. Their delta subunits each contained two ferredoxin-type [4Fe-4S] cluster binding motifs (CXXCXXCXXXCP), while their beta subunits each contained four conserved cysteines in addition to a thiamine PPi-binding domain. Amino-terminal sequence comparisons show that POR, VOR, indolepyruvate OR, and 2-ketoglutarate OR of P. furiosus all belong to a phylogenetically homologous OR family. Moreover, the single-subunit pyruvate ORs from mesophilic and moderately thermophilic bacteria and from an amitochondriate eucaryote each contain four domains which are phylogenetically homologous to the four subunits of the hyperthermophilic ORs (27% sequence identity). Three of these subunits are also homologous to the dimeric POR from a mesophilic archaeon, Halobacterium halobium (21% identity). A model is proposed to account for the observed phenotypes based on genomic rearrangements of four ancestral OR subunits.  相似文献   

12.
A new class of bacterial multisubunit membrane-bound electron-transfer complexes has been identified based on biochemical and bioinformatic data. It contains subunits homologous to the three-subunit molybdopterin oxidoreductases and four additional subunits, two of which are c-type cytochromes. The complex was purified from the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus, and putative operons for similar complexes were identified in a wide range of bacteria. In most cases, the presence of the new complex is anticorrelated with the cytochrome bc or bf electron-transfer complex, suggesting that it replaces it functionally. This appears to be a widespread yet previously unrecognized protein complex involved in energy metabolism in bacteria.  相似文献   

13.
E Jablonski  M DeLuca 《Biochemistry》1978,17(4):672-678
Highly purified NADH and NADPH:FMN oxidoreductases from Beneckea harveyi have been characterized with regard to kinetic parameters, association with luciferase, activity with artificial electron acceptors, and the effects of inhibitors. The NADH:FMN oxidoreductase exhibits single displacement kinetics while the NADPH:FMN oxidoreductase exhibits double displacement or ping-pong kinetics. This is consistent with the formation of a reduced enzyme as an intermediate in the reaction of catalyzed by the NADPH:FMN oxidoreductase. Coupling of either of the oxidoreductases to the luciferase reaction decreases the apparent Kms for NADH, NADPH, and FMN, supporting the suggestion of a complex between the oxidoreductases and luciferase. The soluble oxidoreductases are more efficient in producing light with luciferase than is a NADH dehydrogenase preparation obtained from the membranes of these bacteria. The soluble enzymes use either FMN or FAD as substrates for the oxidation of reduced pyridine nucleotides while the membrane NADH dehydrogenase is much more active with artificial electron acceptors such as ferricyanide and methylene blue. FMN and FAD are very poor acceptors. The evidence indicates that neither of the soluble oxidoreductases is derived from the membranes. Both enzymes are constitutive and do not depend on the synthesis of luciferase.  相似文献   

14.
Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth''s history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet''s surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this ‘composome’ analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by β-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.  相似文献   

15.
In luminous bacteria NAD(P)H:flavin-oxidoreductases LuxG and Fre, there are homologous enzymes that could provide a luciferase with reduced flavin. Although Fre functions as a housekeeping enzyme, LuxG appears to be a source of reduced flavin for bioluminescence as it is transcribed together with luciferase. This study is aimed at providing the basic conception of Fre and LuxG evolution and revealing the peculiarities of the active site structure resulted from a functional variation within the oxidoreductase family. A phylogenetic analysis has demonstrated that Fre and LuxG oxidoreductases have evolved separately after the gene duplication event, and consequently, they have acquired changes in the conservation of functionally related sites. Namely, different evolutionary rates have been observed at the site responsible for specificity to flavin substrate (Arg 46). Also, Tyr 72 forming a part of a mobile loop involved in FAD binding has been found to be conserved among Fre in contrast to LuxG oxidoreductases. The conservation of different amino acid types in NAD(P)H binding site has been defined for Fre (arginine) and LuxG (proline) oxidoreductases.  相似文献   

16.
《BBA》2023,1864(2):148958
Pyruvate:quinone oxidoreductases (PQOs) catalyse the oxidative decarboxylation of pyruvate to acetate and concomitant reduction of quinone to quinol with the release of CO2. They are thiamine pyrophosphate (TPP) and flavin-adenine dinucleotide (FAD) containing enzymes, which interact with the membrane in a monotopic way. PQOs are considered as part of alternatives to most recognized pyruvate catabolizing pathways, and little is known about their taxonomic distribution and structural/functional relationship.In this bioinformatics work we tackled these gaps in PQO knowledge. We used the KEGG database to identify PQO coding genes, performed a multiple sequence analysis which allowed us to study the amino acid conservation on these enzymes, and looked at their possible cellular function. We observed that PQOS are enzymes exclusively present in prokaryotes with most of the sequences identified in bacteria. Regarding the amino acid sequence conservation, we found that 75 amino acid residues (out of 570, on average) have a conservation over 90 %, and that the most conserved regions in the protein are observed around the TPP and FAD binding sites. We systematized the presence of conserved features involved in Mg2+, TPP and FAD binding, as well as residues directly linked to the catalytic mechanism. We also established the presence of a new motif named “HEH lock”, possibly involved in the dimerization process. The results here obtained for the PQO protein family contribute to a better understanding of the biochemistry of these respiratory enzymes.  相似文献   

17.
The in vivo formation of disulfide bonds, which is critical for the stability and/or activity of many proteins, is catalyzed by thiol-disulfide oxidoreductases. In the present studies, we show that the Gram-positive eubacterium Bacillus subtilis contains three genes, denoted bdbA, bdbB, and bdbC, for thiol-disulfide oxidoreductases. Escherichia coli alkaline phosphatase, containing two disulfide bonds, was unstable when secreted by B. subtilis cells lacking BdbB or BdbC, and notably, the expression levels of bdbB and bdbC appeared to set a limit for the secretion of active alkaline phosphatase. Cells lacking BdbC also showed decreased stability of cell-associated forms of E. coli TEM-beta-lactamase, containing one disulfide bond. In contrast, BdbA was not required for the stability of alkaline phosphatase or beta-lactamase. Because BdbB and BdbC are typical membrane proteins, our findings suggest that they promote protein folding at the membrane-cell wall interface. Interestingly, pre-beta-lactamase processing to its mature form was stimulated in cells lacking BdbC, suggesting that the unfolded form of this precursor is a preferred substrate for signal peptidase. Surprisingly, cells lacking BdbC did not develop competence for DNA uptake, indicating the involvement of disulfide bond-containing proteins in this process. Unlike E. coli and yeast, none of the thiol-disulfide oxidoreductases of B. subtilis was required for growth in the presence of reducing agents. In conclusion, our observations indicate that BdbB and BdbC have a general role in disulfide bond formation, whereas BdbA may be dedicated to a specific process.  相似文献   

18.
In anaerobes, decarboxylation of pyruvate is executed by the enzyme pyruvate:ferredoxin oxidoreductase, which donates electrons to ferredoxin. The pyruvate:ferredoxin oxidoreductase and its homologues utilise many alternative substrates in bacterial anaerobes. The pyruvate:ferredoxin oxidoreductase from anaerobic protozoa, such as Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica have retained this diversity in usage of alternative keto acids for energy production utilising a wide variety of substrates. In addition to this flexibility, both T. vaginalis and G. duodenalis have alternative enzymes that are active in metronidazole-resistant parasites and that do not necessarily involve donation of electrons to characterized ferredoxins. Giardia duodenalis has two oxoacid oxidoreductases, including pyruvate:ferredoxin oxidoreductase and T. vaginalis has at least three. These alternative oxoacid oxidoreductases apparently do not share homology with the characterized pyruvate:ferredoxin oxidoreductase in either organism. Independently, both G. duodenalis and T. vaginalis have retained alternative oxoacid oxidoreductase activities that are clearly important for the survival of these parasitic protists.  相似文献   

19.
S Greer  R N Perham 《Biochemistry》1986,25(9):2736-2742
A glutathione reductase negative strain of Escherichia coli K-12 was isolated as a thermoresistant survivor when a gor::MuctsAp lysogen was subjected to elevated temperature. It was found that in addition to being ampicillin sensitive this mutant was hypersensitive to arsenate, which may be connected with the fact that the gor gene maps between 77 and 78 min on the E. coli genome, close to the pit locus encoding the major arsenate transport system of E. coli. A derivative of this mutant was used as the recipient in a screen of the Clarke and Carbon hybrid plasmid bank of E. coli DNA. A plasmid, pGR, was isolated that encodes both an arsenate-resistance element and glutathione reductase. Restriction mapping of this plasmid showed that the insert DNA is approximately 10 kilobase pairs in length, and a fragment of the gor gene was identified that allowed the gor gene to be accurately mapped on pGR by a combination of restriction analysis and Southern blotting. The DNA sequence of the gor gene was determined and found to encode a protein of 450 amino acid residues. The glutathione reductase of E. coli is very homologous to the human enzyme and is also related (though less closely) to other flavoprotein disulfide oxidoreductases whose sequences are available. These enzymes have retained a common mechanism while evolving different specificities.  相似文献   

20.
《BBA》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron–sulfur subunit which contains three distinct iron–sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号