共查询到9条相似文献,搜索用时 15 毫秒
1.
Leach RN Brette F Orchard CH 《Biochemical and biophysical research communications》2007,352(3):794-798
The role of endogenous beta subunits of the L-type Ca channel in native cardiac ventricular myocytes is unclear. We have therefore investigated the effect of inhibiting beta subunit expression in rat myocytes, by culturing isolated myocytes for 24 h with either antisense oligonucleotide against the beta subunit or with scrambled oligonucleotide (control). Alpha1 subunit expression and distribution were then determined by immunolabeling, and L-type Ca current measured using the whole cell patch-clamp technique. Cells treated with antisense showed increased perinuclear staining for alpha1, decreased Ca current amplitude and a small rightward shift of the activation curve and the I-V relation, with no significant effect on inactivation. These data suggest that endogenous beta subunits in native cardiac myocytes help to traffic the alpha1 subunit to the cell membrane and thus play a major role in determining Ca current amplitude. 相似文献
2.
Ira R. Josephson Antonio Guia W. Jonathan Lederer Michael D. Stern 《Biochemical and biophysical research communications》2010,396(3):763-766
The contraction of adult mammalian ventricular cardiomyocytes is triggered by the influx of Ca2+ ions through sarcolemmal L-type Ca2+ channels (LCCs). However, the gating properties of unitary LCCs under physiologic conditions have remained elusive. Towards this end, we investigated the voltage-dependence of the gating kinetics of unitary LCCs, with a physiologic concentration of Ca2+ ions permeating the channel. Unitary LCC currents were recorded with 2 mM external Ca2+ ions (in the absence of LCC agonists), using cell-attached patches on K-depolarized adult rat ventricular myocytes. The voltage-dependence of the peak probability of channel opening (Po vs. Vm) displayed a maximum value of 0.3, a midpoint of −12 mV, and a slope factor of 8.5. The maximum value for Po of the unitary LCC was significantly higher than previously assumed, under physiologic conditions. We also found that the mean open dwell time of the unitary LCC increased twofold with depolarization, ranging from 0.53 ± 0.02 ms at −30 mV to 1.08 ± 0.03 ms at 0 mV. The increase in mean LCC open time with depolarization counterbalanced the decrease in the single LCC current amplitude; the latter due to the decrease in driving force for Ca2+ ion entry. Thus, the average amount of Ca2+ ions entering through an individual LCC opening (∼300-400 ions) remained relatively constant over this range of potentials. These novel results establish the voltage-dependence of unitary LCC gating kinetics using a physiologic Ca2+ ion concentration. Moreover, they provide insight into local Ca2+-induced Ca2+ release and a more accurate basis for mathematical modeling of excitation-contraction coupling in cardiac myocytes. 相似文献
3.
Effects of PFOS and PFOA on L-type Ca2+ currents in guinea-pig ventricular myocytes 总被引:10,自引:0,他引:10
Harada K Xu F Ono K Iijima T Koizumi A 《Biochemical and biophysical research communications》2005,329(2):487-494
Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are amphiphiles found ubiquitously in the environment, including wildlife and humans, and are known to have toxic effects on physiological functions of various tissues. We investigated the effects of PFOS and PFOA on action potentials and L-type Ca(2+) currents, I(CaL), in isolated guinea-pig ventricular myocytes using whole-cell patch-clamp recording. In current-clamp experiments, PFOS significantly decreased the rate of spike, action potential duration, and peak potential at doses over 10 microM. In voltage-clamp experiments, PFOS increased the voltage-activated peak amplitude of I(CaL), and shifted the half-activation and inactivation voltages of I(CaL) to hyperpolarization. PFOA had similar effects PFOS, but showed significantly lower potency. These findings are consistent with previous observations for anionic n-alkyl surfactants, suggesting that PFOS and PFOA may change membrane surface potential, thereby eliciting general effects on calcium channels. These findings provide further insights into the mechanisms of PFOA and PFOS toxicities. 相似文献
4.
采用神经元急性分离和膜片箝技术以及细胞贴附式方式记录通道活动 ,探讨DHP类Ca2 通道激动剂BayK8644及拮抗剂nifedipine对下丘脑神经元L 型Ca2 通道的影响。结果显示 ,在BayK8644作用下 ,通道开放形式发生变化 ,明显可见多级开放 ;通道平均开放时间、平均开放概率显著增加 ,但单通道电导无明显变化。nifedipine的作用与BayK8644相反。结果提示 ,BayK8644对下丘脑神经元L 型Ca2 通道有明显激动作用 ,nifedip ine有显著抑制作用 相似文献
5.
Yu. M. Kokoz A. S. Grichenko A. F. Korystova D. A. Lankina N. I. Markevich 《Bioscience reports》1999,19(1):17-25
The perforated patch clamp method was used to study the effect of the agonist of beta-adrenoreceptors isoproterenol on L-type Ca2+ current in cardiocytes of rats and ground squirrels in two states: active and hibernating. It is shown that isoproterenol exerts a dual effect on Ca2+ currents of rats and ground squirrels in the active state: at V
h = –50 mV, the current increases, whereas at V
h = –30 mV, it decreases. In hibernating ground squirrels, the dual effect of isoproterenol is not observed: isoproterenol increases Ca2+ current at any V
h values. The hypothesis is put forward that, during the entrance of ground squirrels into hibernation, the phosphorylation of one of the sites (not cAMP-dependent) of L-type Ca2+ channels is blocked. 相似文献
6.
Josefa Sabrià Conxita Pastor Maria Victoria Clos Alicia Garcia Albert Badia 《Journal of neurochemistry》1995,64(6):2567-2571
Abstract: Transmitter release at the nerve terminal is mediated by the influx of Ca2+ through voltage-sensitive calcium channels (VSCCs). Many types of VSCCs have been found in neurons (T, N, L, and P), but uncertainty remains about which ones are involved in neuronal excitation-secretion coupling. Specific ligands for the L- and N-type VSCCs were used to determine which of these subtypes might be involved in the K+ -evoked [3 H]noradrenaline release from superfused rat brain cortical and hippocampal synaptosomes. In cortical presynaptic terminals the 1,4-dihydropyridine agonist Bay K 8644 enhanced the K+ (15 m M )-evoked [3 H]noradrenaline release. This effect was reversed by the 1,4-dihydropyridine antagonists nimodipine and nitrendipine. The L-type VSCC ligands had no effect on hippocampal synaptosomes. In contrast, the N-type VSCC blocker ω-conotoxin markedly reduced the K+ -evoked [3 H]noradrenaline release in nerve terminals from both regions. Inhibition was greater in hippocampal synaptosomes. When applied together the inhibitory actions of nimodipine and ω-conotoxin were approximately additive. These findings indicate that both L- and N-type VSCCs participate in noradrenaline release in rat brain cortex and suggest that noradrenergic terminals in the two regions examined may have distinct populations of VSCCs: L type in cortex and N type in hippocampus. 相似文献
7.
The effects of the divalent cations strontium and magnesium on Shaker K channels expressed in Xenopus oocytes were investigated with a two-electrode voltage-clamp technique. 20 mm of the divalent cation shifted activation (conductance vs. potential), steady-state inactivation and inactivation time constant vs. potential curves 10–11 mV along the potential axis. The results were interpreted in terms of the surface charge theory, and the surface charge density was estimated to be −0.27 e nm−2. A comparison of primary structure data and experimental data from the present and previous studies suggests that the first five residues on the extracellular loop between transmembrane segment 5 and the pore region constitutes the functional surface charges. The results further suggest that the surface charge density plays an important role in controlling the activation voltage range. Received: 12 November 1997/Revised: 1 June 1998 相似文献
8.
A detailed temperature dependence study of a well-defined plant ion channel, the Ca2+-activated K+ channel of Chara corallina, was performed over the temperature range of their habitats, 5–36°C, at 1°C resolution. The temperature dependence of the
channel unitary conductance at 50 mV shows discontinuities at 15 and 30°C. These temperatures limit the range within which
ion diffusion is characterized by the lowest activation energy (E
a
= 8.0 ± 1.6 kJ/mol) as compared to the regions below 15°C and above 30°C. Upon reversing membrane voltage polarity from 50
to −50 mV the pattern of temperature dependence switched from discontinuous to linear with E
a
= 13.6 ± 0.5 kJ/mol. The temperature dependence of the effective number of open channels at 50 mV showed a decrease with increasing
temperature, with a local minimum at 28°C. The mean open time exhibited a similar behavior. Changing the sign of membrane
potential from 50 to −50 mV abolished the minima in both temperature dependencies. These data are discussed in the light of
higher order phase transitions of the Characean membrane lipids and corresponding change in the lipid-protein interaction,
and their modulation by transmembrane voltage.
Received: 14 June 2000/Revised: 20 September 2000 相似文献
9.
We present three mechanisms by which Na+ inhibits the open channel currents of the predominant K+ channel in the tonoplast of Chara corallina: (i) Fast block, i.e., short (100 ns range) interruptions of the open channel current which are determined by open channel noise analysis, (ii): Oligo-subconductance
mode, i.e., a gating mode which occurs preferentially in the presence of Na+; this mode comprises a discrete number (here 3) of open states with smaller conductances than normal, and (iii): Polysubconductance
mode, i.e., a gating mode with a nondiscrete, large number (>30) of states with smaller conductances than the main open channel
conductance. This novel mode has also been observed only in the presence of Na+.
Received: 16 November 1999/Revised: 8 February 2000 相似文献