首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large unitary conductance Ca2+-activated K+ channels from smooth muscle membrane were incorporated into phospholipid planar bilayers, and the blockade induced by internally and externally applied Cs+ was characterized. Internal Cs+ blockade is voltage dependent and can be explained on the basis of a Cs+ binding to a site that senses 54% of the applied voltage, with an apparent dissociation constant, Kd(0), of 70 mM. On the other hand, external Cs+ blocks the channel in micromolar amounts, and the voltage dependence of blockade is a function of Cs+ concentration. The fractional electrical distance can be as large as 1.4 at 10 mM Cs+. This last result suggests that the channel behaves as a multi-ion pore. At large negative voltages the I-V relationships in the presence of external Cs+ show an upturn, indicating relief of Cs+ block. External Cs+ blockade is relieved by increasing the internal K+ concentration, but can be enhanced by increasing the external K+. All the characteristics of external Cs+ block can be explained by a model that incorporates a "knock-on" of Cs+ by K+.  相似文献   

2.
Kai L  Hu DY  Wang ZF  Shi YL  Liu LM 《生理学报》2001,53(4):291-295
在由股动脉放血制备的失血性休克大鼠模型急性分离的肠系膜动脉平滑肌细胞上,利用膜片箝单通道记录技术观察了血管平滑肌依钙K^ 通道(BKca)的活动,发现在对去甲肾上腺素(NE)反应性增高的休克代偿期,BKca的开放概率(P0)和单位电导都显著较正常动物的低,P0的改变主要是由通道的慢关闭时间常数(τcs)增大引起关闭时间延长所致;而处于对NE反应性降低的休克失代偿期,BKca的P0和单位电导都高于正常动物,P0的变化也主要是τcs减小所致。  相似文献   

3.
4.
We investigated the effects of curcumin, the principal active compound of turmeric, on voltage-dependent K+ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using the voltage-clamp technique. Curcumin reduced the Kv current in a dose-dependent manner with an apparent Kd value of 1.07 ± 0.03 μM. Although curcumin did not alter the kinetics of Kv current activation, it predominantly accelerated the decay rate of channel inactivation. The association and dissociation rate constants of curcumin were 1.35 ± 0.05 μM?1 s?1 and 1.47 ± 0.17 s?1, respectively. Curcumin did not alter the steady-state activation or inactivation curves. Application of train pulses (1 or 2 Hz) increased curcumin-induced blockade of the Kv current, and the recovery time constant also increased in the presence of curcumin suggesting, that the inhibitory action of Kv currents by curcumin was use-dependent. From these results, we concluded that curcumin inhibited vascular Kv current in a state-, time-, and use-dependent manner.  相似文献   

5.
This study sought to define whether inward rectifying K(+) (K(IR)) channels were modulated by vasoactive stimuli known to depolarize and constrict intact cerebral arteries. Using pressure myography and patch-clamp electrophysiology, initial experiments revealed a Ba(2+)-sensitive K(IR) current in cerebral arterial smooth muscle cells that was active over a physiological range of membrane potentials and whose inhibition led to arterial depolarization and constriction. Real-time PCR, Western blot, and immunohistochemical analyses established the expression of both K(IR)2.1 and K(IR)2.2 in cerebral arterial smooth muscle cells. Vasoconstrictor agonists known to depolarize and constrict rat cerebral arteries, including uridine triphosphate, U46619, and 5-HT, had no discernable effect on whole cell K(IR) activity. Control experiments confirmed that vasoconstrictor agonists could inhibit the voltage-dependent delayed rectifier K(+) (K(DR)) current. In contrast to these observations, a hyposmotic challenge that activates mechanosensitive ion channels elicited a rapid and sustained inhibition of the K(IR) but not the K(DR) current. The hyposmotic-induced inhibition of K(IR) was 1) mimicked by phorbol-12-myristate-13-acetate, a PKC agonist; and 2) inhibited by calphostin C, a PKC inhibitor. These findings suggest that, by modulating PKC, mechanical stimuli can regulate K(IR) activity and consequently the electrical and mechanical state of intact cerebral arteries. We propose that the mechanoregulation of K(IR) channels plays a role in the development of myogenic tone.  相似文献   

6.
Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine concentration value of 83.8 +/- 12.9 microM. The Hill coefficient was 1.2 +/- 0.3. The slope conductance of the current-voltage relationship was 320.1 +/- 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.  相似文献   

7.
K+通道维持着血管平滑肌细胞的静息膜电位.目前发现血管微动脉平滑肌细胞上主要表达内向整流型K+通道、ATP敏感型K+通道、电压依赖型K+通道和大电导钙激活型K+通道等四种K+通道.本文对微动脉平滑肌细胞K+通道最新进展做一综述.  相似文献   

8.
《Life sciences》1995,56(15):PL291-PL298
The aim of this study was to examine the effects of MCI-154, a new positive inotropic agent with vasodilating properties, on the Ca2+-activated K+ channel (KCa channel) of vascular smooth muscle cells. Cultured smooth muscle cells from a porcine coronary artery were studied using the patch-clamp technique. Extracellular application of 100 μM MCI-154 activated the KCa channel in intact cell-attached patch configurations. In excised inside-out patch configurations, application of 100μM MCI-154 to the cytosolic side activated the KCa channel directly, suggesting that the Ca2+ sensitivity of the KCa channel itself is modulated. Though extracellular application of 100 μM amrinone, a phosphodiesterase inhibitor, activated the KCa channel in the cell-attached patch configurations, application of 100 μm amrinone to the cytosolic side could not activate the KCa channel in inside-out patch configurations. These results indicate that different from amrinone, MCI-154 can modulate Ca2+ sensitivity of the KCa channel in vascular smooth muscle cells.  相似文献   

9.
10.
This study examined the mechanisms of hypertension in diabetes. We investigated the effects of serotonin (5-HT) on voltage-dependent K+ (Kv) channel activity, vasoconstriction, 5-HT receptor expression levels, and the involvement of protein kinase C (PKC) in mesenteric arteries of Otsuka Long-Evans Tokushima fatty (OLETF) rats compared with Long-Evans Tokushima Otsuka (LETO) rats. Blood pressure, body weight, blood glucose level, and mesenteric arterial wall thickness were greater in OLETF rats. The 5-HT-induced vasoconstriction of mesenteric arteries was greater in OLETF rats than in LETO rats and inhibited by the 5-HT2A inhibitor inhibitor, ketanserin. The Kv currents in mesenteric arterial smooth muscle cells (MASMCs), determined using a perforated patch clamp technique, was inhibited by 1 mM 4-AP (42.5 ± 4.1% vs. 63.5 ± 2.3% in LETO vs. OLETF rats at +40 mV), but was insensitive to 1 mM TEA and 100 nM iberiotoxin. The inhibition of Kv current by 1 μM 5-HT in MASMCs was greater in OLETF rats than in LETO rats (17.1 ± 2.2% vs. 33.2 ± 2.7% in LETO vs. OLETF rats at +40 mV), and the inhibition was prevented by treatment with the PKCα- and β- selective inhibitor, Gö6976. The expression level of 5-HT2A, but not 5-HT2B, receptor and the expression levels of total PKC, PKCβ, and PKCε, but not PKCα, were higher in the mesenteric arteries of OLETF rats compared with LETO rats. The enhanced expression of 5-HT2A receptor together with PKCβ may promote mesenteric vasoconstriction and increase vascular resistance in OLETF rats.  相似文献   

11.
12.
ACh causes a long-lasting inhibition of STOCs via G proteins in intestinal smooth muscle cells. We examined the effects of isoproterenol (Iso) on the ACh-induced inhibition of STOCs in isolated ileal smooth muscle cells using the G omega-seal whole cell clamp technique. In control, ACh (1 microM) completely suppressed STOCs, which did not desensitize over a period lasting 20 minutes. When Iso (10 microM) was added to the bath in the presence of ACh, the ACh-induced inhibition of STOCs was gradually removed. This effect of Iso was prevented by propranolol (10 microM). Application of Db-cAMP (500 microM) mimicked the Iso effects. Intracellulary applied GTP-gamma S (100 microM) gradually suppressed STOCs in the absence of ACh, which could not be removed by either Iso or Db-cAMP. These results suggest that beta-adrenergic stimulation causes a removal of the muscarinic inhibition of STOCs via a cAMP-dependent process.  相似文献   

13.
Cell shrinkage is an incipient hallmark of apoptosis in a variety of cell types. The apoptotic volume decrease has been demonstrated to attribute, in part, to K+ efflux; blockade of plasmalemmal K+ channels inhibits the apoptotic volume decrease and attenuates apoptosis. Using combined approaches of gene transfection, single-cell PCR, patch clamp, and fluorescence microscopy, we examined whether overexpression of Bcl-2, an anti-apoptotic oncoprotein, inhibits apoptosis in pulmonary artery smooth muscle cells (PASMC) by diminishing the activity of voltage-gated K+ (Kv) channels. A human bcl-2 gene was infected into primary cultured rat PASMC using an adenoviral vector. Overexpression of Bcl-2 significantly decreased the amplitude and current density of Kv currents (I(Kv)). In contrast, the apoptosis inducer staurosporine (ST) enhanced I(Kv). In bcl-2-infected cells, however, the ST-induced increase in I(Kv) was completely abolished, and the ST-induced apoptosis was significantly inhibited compared with cells infected with an empty adenovirus (-bcl-2). Blockade of Kv channels in control cells (-bcl-2) by 4-aminopyridine also inhibited the ST-induced increase in I(Kv) and apoptosis. Furthermore, overexpression of Bcl-2 accelerated the inactivation of I(Kv) and downregulated the mRNA expression of the pore-forming Kv channel alpha-subunits (Kv1.1, Kv1.5, and Kv2.1). These results suggest that inhibition of Kv channel activity may serve as an additional mechanism involved in the Bcl-2-mediated anti-apoptotic effect on vascular smooth muscle cells.  相似文献   

14.
15-Hydroxyeicosatetraenoic acid (15-HETE) is an important hypoxic product from arachidonic acid (AA) in the wall of pulmonary vessels. Although its effects on pulmonary artery constriction are well known, it remains unclear whether 15-HETE acts on the apoptotic responses in pulmonary artery smooth muscle cells (PASMCs) and whether K+ channels participate in this process. These hypothesises were validated by cell viability assay, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, mitochondrial potentials assay, caspase activity assay and western blot. We found that 15-HETE enhanced cell survival, suppressed the expression and activity of caspase-3, upregulated bcl-2 and attenuated mitochondrial depolarization, prevented chromatin condensation and partly reversed K+ channel opener-induced apoptosis in PASMCs under serum-deprived conditions. Our data indicated that 15-HETE inhibits the apoptosis in PASMCs through, at least in part, inactivating K+ channels. Yumei Li and Qian Li contributed equally to this work.  相似文献   

15.
16.
We examined the effects of acute hypoxia on Ba2+-sensitive inward rectifier K+ (K(IR)) current in rabbit coronary arterial smooth muscle cells. The amplitudes of K(IR) current was definitely higher in the cells from small-diameter (<100 microm) coronary arterial smooth muscle cells (SCASMC, -12.8 +/- 1.3 pA/pF at -140 mV) than those in large-diameter coronary arterial smooth muscle cells (>200 microm, LCASMC, -1.5 +/- 0.1 pA pF(-1)). Western blot analysis confirmed that Kir2.1 protein was expressed in SCASMC but not LCASMC. Hypoxia activated much more KIR currents in symmetrical 140 K+. This effect was blocked by the adenylyl cyclase inhibitor SQ-22536 (10 microM) and mimicked by forskolin (10 microM) and dibutyryl-cAMP (500 microM). The production of cAMP in SCASMC increased 5.7-fold after 6 min of hypoxia. Hypoxia-induced increase in KIR currents was abolished by the PKA inhibitors, Rp-8-(4-chlorophenylthio)-cAMPs (10 microM) and KT-5720 (1 microM). The inhibition of G protein with GDPbetaS (1 mM) partially reduced (approximately 50%) the hypoxia-induced increase in KIR currents. In Langendorff-perfused rabbit hearts, hypoxia increased coronary blood flow, an effect that was inhibited by Ba2+. In summary, hypoxia augments the KIR currents in SCASMC via cAMP- and PKA-dependent signaling cascades, which might, at least partly, explain the hypoxia-induced coronary vasodilation.  相似文献   

17.
目的:研究尼古丁对Wistar大鼠冠状动脉平滑肌大电导钙激活钾通道(BKca)活性的抑制作用及其细胞信号转导机制。方法:8周雄性Wistar大鼠随机分为两组:生理盐水组和尼古丁组;分别予以生理盐水和尼古丁2mg/(kg.d)注射21 d,蛋白酶法分离冠状动脉血管平滑肌细胞,将两组平滑肌细胞分别以对氯苯硫基环腺苷酸(CPT-cAMP,100μmol/L)和佛司可林(forskolin,10μmol/L)干预,单通道膜片钳记录干预前后平滑肌细胞单通道电流的平均开放时间(To)、平均关闭时间(Tc)、平均开放概率(Po)。结果:CPT-cAMP和Forskolin均能显著延长生理盐水组大鼠BKca的平均开放时间,缩短平均关闭时间,增加通道开放概率(P均<0.01)。对尼古丁组BKca的To、Tc、Po均无明显影响。结论:尼古丁促使冠状动脉血管收缩的生理机制是通过抑制cAMP/PKA途径诱导的大电导钙激活钾通道活性增加实现的。  相似文献   

18.
Measurements of 86Rb efflux across the apical and basal-lateral aspects of intact monolayers of 'high-resistance' MDCK cells mounted in Ussing chambers have been made. A transient increase in 86Rb efflux across both epithelial borders upon stimulation with adrenalineeeeeee or ionophore A23187 is observed. The increased 86Rb across the basal cell aspects is of greatest quantitative importance. Measurements of total cellular K+ contents by flame photometry of tissue extracts indicate a net loss of K+ following adrenalin addition. The effects of adrenalin and ionophore A23187 upon 86Rb efflux are abolished in 'Ca2+ -free' media. The properties of the Ca2+ -dependent increase in 86Rb efflux show similarities to Ca2+ -activated K+ conductances in other tissues, notably human red cells, including inhibition by quinine (1 mM), tetraethylammonium (25 mM) and insensitivity to bee venom toxin (apamin) (25 nM). Adrenalin is only effective when applied to the basal bathing solution suggesting that the receptors mediating adrenalin action are located upon the basal-lateral membranes. Half maximal stimulation of 86Rb efflux by adrenalin is observed at 9.1 X 10(-7) M. The action of various adrenergic receptor agonists and antagonists are consistent with adrenalin action being mediated by an alpha-adrenergic receptor.  相似文献   

19.
AimsWe examined the effect of LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, on voltage-dependent K+ (Kv) channels.Main methodsElectrophysiological recordings were performed in freshly isolated rabbit coronary arterial smooth muscle cells.Key findingsThe Kv current amplitude was inhibited by LY294002 in a dose-dependent manner, with a Kd value of 1.48 μM. Without alteration of the kinetics of activation, LY294002 accelerated the decay rate of Kv channel inactivation. The rate constants of association and dissociation for LY294002 were 1.83 ± 0.01 μM? 1 s? 1 and 2.59 ± 0.14 s? 1, respectively. Application of LY294002 had no significant impact on the steady-state activation or inactivation curves. In the presence of LY294002, the recovery time constant from inactivation was increased, and Kv channel inhibition increased under train pulses (1 or 2 Hz). This indicates that LY294002-induced Kv channel inhibition is use-dependent. Furthermore, pretreatment with another PI3K inhibitor, wortmannin (10 μM), did not affect the Kv current, and did not change the inhibitory effect of LY294002.SignificanceBased on these results, we suggest that LY294002 directly blocks Kv current irrespective of PI3K inhibition.  相似文献   

20.
Cai B  Gong D  Pan Z  Liu Y  Qian H  Zhang Y  Jiao J  Lu Y  Yang B 《Life sciences》2007,80(22):2060-2066
Plenty of evidence suggests that increased blood levels of homocysteine (Hcy) are an independent risk factor for the development of vascular diseases, but the underlying mechanisms are not well understood. It is well known that the larger conductance Ca(2+)-activated K(+) channels (BK(Ca)) play an essential role in vascular function, so the present study was conducted to determine direct effects of Hcy on BK(Ca) channel properties of smooth muscle cells. Whole-cell patch-clamp recordings were made in mesenteric artery smooth muscle cells isolated from normal rat and patients to investigate effects of 5, 50 and 500 microM Hcy on BK(Ca), the main current mediating vascular responses in these cells. In human artery smooth muscle cells, maximum BK(Ca) density (measured at +60 mV) was inhibited by about 24% (n=6, P<0.05). In rat artery smooth muscle cells, maximum BK(Ca) density was decreased by approximately 27% in the presence of 50 microM Hcy (n=8, P<0.05). In addition, when rat artery smooth muscle cells was treated with 50 microM Hcy for 24 h, maximum BK(Ca) density decreased by 58% (n=5, P<0.05). These data suggest that Hcy significantly inhibited BK(Ca) currents in isolated human and rat artery smooth muscle cells. BK(Ca) reduced and impaired by elevated Hcy levels might contribute to abnormal vascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号