共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu-Chen LY 《Life sciences》2004,75(5):511-536
Chronic or repeated administration of κ opioid agonists leads to tolerance to the subsequent drug administration. The mechanisms underlying tolerance are complex and changes at the receptor level contribute in part to the development of tolerance. This review focuses on agonist-induced phosphorylation, desensitization, internalization and down-regulation of the κ opioid receptor. In vivo studies on the rat and guinea pig brains are reviewed, followed by in vitro investigations on cells and tissues endogenously expressing the κ opioid receptor. The bulk of the article describes the studies performed after cloning of the opioid receptors on regulation and trafficking of the κ opioid receptors (KORs) expressed in various cell systems. Topics reviewed and discussed include biochemical mechanisms of desensitization, internalization and down-regulation, differences in the regulation of the rat and the human κ opioid receptors (rKOR and hKOR, respectively) and the structural basis for the species variations, differential abilities of agonists in inducing regulation of the hKOR, the relationship (or the lack thereof) of KOR internalization to activation of p42/p44 mitogen-activated kinase and to adenylyl cyclase superactivation, the role of the PDZ domain-containing protein NHERF-1/EBP50 in the trafficking of the hKOR and the relationship between receptor phosphorylation and tolerance development in mice. There are still questions remained to be answered. Among the issues to be resolved are the signals that direct the sorting of internalized hKORs to the recycling and degradation pathways, the recycling pathway(s) of the internalized hKOR, the molecular bases of differential regulation of the KORs by agonists and the occurrence of agonist-induced KOR internalization occur in vivo and, if so, its role in tolerance and dependence. 相似文献
2.
Dynorphins, endogenous peptides for the kappa opioid receptor, play important roles in many physiological and pathological functions. Here, we examined how prolonged treatment with three major prodynorphin peptides, dynorphin A (1-17) (Dyn A), dynorphin B (1-13) (Dyn B) and alpha-neoendorphin (alpha-Neo), regulated the human kappa opioid receptor (hKOR) stably expressed in Chinese hamster ovary (CHO) cells. Results from receptor binding and [(35)S]GTPgammaS binding assays showed that these peptides were potent full agonists of the hKOR with comparable receptor reserve and intrinsic efficacy to stimulate G proteins. A 4-h incubation with alpha-Neo at a concentration of approximately 600xEC(50) value (from [(35)S]GTPgammaS binding) resulted in receptor down-regulation to a much lower extent than the incubation with Dyn A and Dyn B at comparable concentrations ( approximately 10% vs. approximately 65%). Extending incubation period and increasing concentrations did not significantly affect the difference. The plateau level of alpha-Neo-mediated receptor internalization (30 min) was significantly less than those of Dyn A and Dyn B. Omission of the serum from the incubation medium or addition of peptidase inhibitors into the serum-containing medium enhanced alpha-Neo-, but not Dyn A- or Dyn B-, mediated receptor down-regulation and internalization; however, the degrees of alpha-Neo-induced adaptations were still significantly less than those of Dyn A and Dyn B. Thus, these endogenous peptides differentially regulate KOR after activating the receptor with similar receptor occupancy and intrinsic efficacy. Both stability in the presence of serum and intrinsic capacity to promote receptor adaptation play roles in the observed discrepancy among the dynorphin peptides. 相似文献
3.
Agonist-specific regulation of delta-opioid receptor trafficking by G protein-coupled receptor kinase and beta-arrestin 总被引:1,自引:0,他引:1
Zhang J Ferguson SS Law PY Barak LS Caron MG 《Journal of receptor and signal transduction research》1999,19(1-4):301-313
Opioid receptors mediate multiple biological functions through their interaction with endogenous opioid peptides as well as opioid alkaloids including morphine and etorphine. Previously we have reported that the ability of distinct opioid agonists to differentially regulate mu-opioid receptor (mu OR) responsiveness is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the receptor (1). In the present study, we further examined the role of GRK and beta-arrestin in agonist-specific regulation of the delta-opioid receptor (delta OR). While both etorphine and morphine effectively activate the delta OR, only etorphine triggers robust delta OR phosphorylation followed by plasma membrane translocation of beta-arrestin and receptor internalization. In contrast, morphine is unable to either elicit delta OR phosphorylation or stimulate beta-arrestin translocation, correlating with its inability to cause delta OR internalization. Unlike for the mu OR, overexpression of GRK2 results in neither the enhancement of delta OR sequestration nor the rescue of delta OR-mediated beta-arrestin translocation. Therefore, our findings not only point to the existence of marked differences in the ability of different opioid agonists to promote delta OR phosphorylation by GRK and binding to beta-arrestin, but also demonstrate differences in the regulation of two opioid receptor subtypes. These observations may have important implications for our understanding of the distinct ability of various opioids in inducing opioid tolerance and addiction. 相似文献
4.
Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling 总被引:1,自引:0,他引:1
Archer-Lahlou E Audet N Amraei MG Huard K Paquin-Gobeil M Pineyro G 《Journal of cellular and molecular medicine》2009,13(1):147-163
An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 μM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Gαl3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors. 相似文献
5.
Morphine induces terminal micro-opioid receptor desensitization by sustained phosphorylation of serine-375 下载免费PDF全文
Morphine is a poor inducer of micro-opioid receptor (MOR) internalization, but a potent inducer of cellular tolerance. Here we show that, in contrast to full agonists such as [D-Ala(2)-MePhe(4)-Gly-ol]enkephalin (DAMGO), morphine stimulated a selective phosphorylation of the carboxy-terminal residue 375 (Ser(375)). Ser(375) phosphorylation was sufficient and required for morphine-induced desensitization of MOR. In the presence of full agonists, morphine revealed partial agonistic properties and potently inhibited MOR phosphorylation and internalization. Upon removal of the drug, DAMGO-desensitized receptors were rapidly dephosphorylated. In contrast, morphine-desensitized receptors remained at the plasma membrane in a Ser(375)-phosphorylated state for prolonged periods. Thus, morphine promotes terminal MOR desensitization by inducing a persistent modification of Ser(375). 相似文献
6.
Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms 总被引:1,自引:0,他引:1
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms. 相似文献
7.
Using a monoclonal antibody interacting with the extracellular amino-terminus of the human VPAC2 receptor but that did not interfere with ligand binding, we measured by flow cytometry receptor internalization and trafficking induced by full agonists, partial agonists and an antagonist in Chinese hamster ovary cells expressing the recombinant receptor. The agonists, but not the antagonist, induced a rapid, dose-dependent receptor internalization blocked by hypertonic sucrose that was more pronounced for the VIP analog N-hexanoyl-VIP (80%) than for VIP and Ro 25-1553 (50%) and the [A11]-VIP (20%). Re-expression of the receptors at the membrane was achieved within two hours after exposure to VIP and Ro 25-1553 was blocked by 25 μM monensin but not by 10 μg/ml cycloheximide. Re-expression was much slower after exposure to the acylated peptide and was blocked by preincubation with 25 μM monensin and 10 μg/ml cycloheximide. 相似文献
8.
Jason R. Healy Padmavani Bezawada Nicholas W. Griggs Andrea L. Devereaux Rae R. Matsumoto John R. Traynor Andrew Coop Christopher W. Cunningham 《Bioorganic & medicinal chemistry letters》2017,27(3):666-669
Opioid analgesic tolerance remains a considerable drawback to chronic pain management. The finding that concomitant administration of delta opioid receptor (DOR) antagonists attenuates the development of tolerance to mu opioid receptor (MOR) agonists has led to interest in producing bifunctional MOR agonist/DOR antagonist ligands. Herein, we present 7-benzylideneoxymorphone (6, UMB 246) displaying MOR partial agonist/DOR antagonist activity, representing a new lead for designing bifunctional MOR/DOR ligands. 相似文献
9.
Matthew B. Robers Brock F. Binkowski Mei Cong Chad Zimprich Cesear Corona Mark McDougall George Otto Christopher T. Eggers Jim Hartnett Thomas Machleidt Frank Fan Keith V. Wood 《Analytical biochemistry》2015
Ligand-mediated endocytosis is a key autoregulatory mechanism governing the duration and intensity of signals emanating from cell surface receptors. Due to the mechanistic complexity of endocytosis and its emerging relevance in disease, simple methods capable of tracking this dynamic process in cells have become increasingly desirable. We have developed a bioluminescent reporter technology for real-time analysis of ligand-mediated receptor endocytosis using genetic fusions of NanoLuc luciferase with various G-protein-coupled receptors (GPCRs). This method is compatible with standard microplate formats, which should decrease work flows for high-throughput screens. This article also describes the application of this technology to endocytosis of epidermal growth factor receptor (EGFR), demonstrating potential applicability of the method beyond GPCRs. 相似文献
10.
Kuwasako K Kitamura K Nagata S Kato J 《Biochemical and biophysical research communications》2008,377(1):109-113
Receptor activity-modifying protein (RAMP)-2 and -3 chaperone calcitonin receptor-like receptor (CRLR) to the plasma membrane, where together they form heterodimeric adrenomedullin (AM) receptors. We investigated the contributions made by His residues situated in the RAMP extracellular domain to AM receptor trafficking and receptor signaling by co-expressing hCRLR and V5-tagged-hRAMP2 or -3 mutants in which a His residue was substituted with Ala in HEK-293 cells. Flow cytometric analysis revealed that hRAMP2-H71A mediated normal hCRLR surface delivery, but the resultant heterodimers showed significantly diminished [125I]AM binding and AM-evoked cAMP production. Expression of hRAMP2-H124A and -H127A impaired surface delivery of hCRLR, which impaired or abolishing AM binding and receptor signaling. Although hRAMP3-H97A mediated full surface delivery of hCRLR, the resultant heterodimers showed impaired AM binding and signaling. Other His residues appeared uninvolved in hCRLR-related functions. Thus, the His residues of hRAMP2 and -3 differentially govern AM receptor function. 相似文献
11.
12.
Youyi Peng Qiang Zhang Sonia Arora Susan M. Keenan Sandhya Kortagere Kenneth M. Wannemacher Richard D. Howells William J. Welsh 《Bioorganic & medicinal chemistry》2009,17(17):6442-6450
A novel family of 1,3,5-trisubstituted 1,2,4-triazoles was discovered as potent and selective ligands for the δ opioid receptor by rational design. Compound 5b exhibited low-nanomolar in vitro binding affinity (IC50 = 5.8 nM), excellent selectivity for the δ opioid receptor over the alternative μ and κ opioid receptors, full agonist efficacy in receptor down-regulation and MAP kinase activation assays, and low-efficacy partial agonist activity in stimulation of GTPγS binding. The apparent discrepancy observed in these functional assays may stem from different signaling pathways involved in each case, as found previously for other G-protein coupled receptors. More biological studies are underway to better understand the differential stimulation of signaling pathways by these novel compounds. 相似文献
13.
Heptahelical opioid receptors utilize Gi proteins to regulate a multitude of effectors including the classical adenylyl cyclases and the more recently discovered mitogen-activated protein kinases (MAPKs). The c-Jun NH2-terminal kinases (JNKs) belong to one of three subgroups of MAPKs. In NG108-15 neuroblastoma x glioma hybrid cells that endogenously express delta-opioid receptors, delta-agonist dose-dependently stimulated JNK activity in a pertussis toxin-sensitive manner. By using COS-7 cells transiently transfected with the cDNAs of delta-opioid receptor and hemagglutinin (HA)-tagged JNK, we delineated the signaling components involved in this pathway. Sequestration of Gbetagamma subunits by transducin suppressed the opioid-induced JNK activity. The possible involvement of the small GTPases was also examined. Expression of dominant negative mutants of Rac and Cdc42 blocked the opioid-induced JNK activation, and a partial inhibition was observed in the presence of the dominant negative mutant of Ras. In contrast, the dominant negative mutant of Rho did not affect the opioid-induced JNK activation. In addition, the receptor-mediated JNK activation was dependent on Src family tyrosine kinases, but independent of phosphatidylinositol-3 kinase and EGF receptor tyrosine kinases. Collectively, these results demonstrate functional regulation of JNK by the delta-opioid receptor, and this pathway requires Gbetagamma, Src kinases and the small GTPases Rac and Cdc42. 相似文献
14.
Kim A. Heidenreich Genevieve de Vellis Patricia R. Gilmore 《Journal of neurochemistry》1988,51(3):878-887
In this report, we have examined the structure, regulation, and function of insulin receptors in cultured neurons from fetal chicken brain. The apparent molecular weight of the alpha-subunit of neuronal insulin receptors, analyzed by photoaffinity labeling and sodium dodecyl sulfate gel electrophoresis under reducing conditions, was 115,000. The number of insulin receptors in the cultures increased from day 2 to day 4 during a period of extensive process formation. After 5 days in culture, there were approximately 40,000 high-affinity insulin receptors per neuron. When neurons were photoaffinity labeled at 16 degrees C and then warmed to 37 degrees C for 30 min, approximately 40% of the cell-surface receptors were recovered in the intracellular, trypsin-insensitive pool. Chronic exposure of neurons to insulin (100 ng/ml) resulted in a time-dependent loss of neuronal insulin receptors with a maximal decrease of 50% after 24 h. Insulin had no effect on glucose transport, glucose oxidation, or glycogen synthase activity in neurons. On the other hand, insulin supported the growth and differentiation of a fraction of neurons isolated from chick forebrain. We conclude that (1) cultured neurons from fetal chicken brain express the same subtype of insulin receptor previously identified in adult rat and human brain, (2) the neuronal subtype of insulin receptor undergoes internalization and down-regulation in response to insulin, and (3) neuronal insulin receptors do not acutely regulate glucose metabolism but mediate growth in neurons. 相似文献
15.
Tolerance develops rapidly to cannabis, cannabinoids, and related drugs acting at the CB1 cannabinoid receptor. However, little is known about what happens to the receptor as tolerance is developing. In this study, we have found that CB1 receptors are rapidly internalized following agonist binding and receptor activation. Efficacious cannabinoid agonists (WIN 55,212-2, CP 55,940, and HU 210) caused rapid internalization. Methanandamide (an analogue of an endogenous cannabinoid, anandamide) was less effective, causing internalization only at high concentration, whereas delta9-tetrahydrocannabinol caused little internalization, even at 3 microM. CB1 internalized via clathrin-coated pits as sequestration was inhibited by hypertonic sucrose. Internalization did not require activated G protein alpha(i), alpha(o), or alpha(s) subunits. A region of the extreme carboxy terminus of the receptor was necessary for internalization, as a mutant CB1 receptor lacking the last 14 residues did not internalize, whereas a mutant lacking the last 10 residues did. Steps involved in the recycling of sequestered receptor were also investigated. Recovery of CB1 to the cell surface after short (20 min) but not long (90 min) agonist treatment was independent of new protein synthesis. Recycling also required endosomal acidification and dephosphorylation. These results show that CB1 receptor trafficking is dynamically regulated by cannabimimetic drugs. 相似文献
16.
Neuromuscular synaptic transmission depends upon tight packing of acetylcholine receptors (AChRs) into postsynaptic AChR aggregates, but not all postsynaptic AChRs are aggregated. Here we describe a new confocal Fluorescence Resonance Energy Transfer (FRET) assay for semi-quantitative comparison of the degree to which AChRs are aggregated at synapses. During the first month of postnatal life the mouse tibialis anterior muscle showed increases both in the number of postsynaptic AChRs and the efficiency with which AChR was aggregated (by FRET). There was a concurrent two-fold increase in immunofluorescent labeling for the AChR-associated cytoplasmic protein, rapsyn. When 1-month old muscle was denervated, postsynaptic rapsyn immunostaining was reduced, as was the efficiency of AChR aggregation. In vivo electroporation of rapsyn-EGFP into muscle fibers increased postsynaptic rapsyn levels. Those synapses with higher ratios of rapsyn-EGFP to AChR displayed a slower metabolic turnover of AChR. Conversely, the reduction of postsynaptic rapsyn after denervation was accompanied by an acceleration of AChR turnover. Thus, a developmental increase in the amount of rapsyn targeted to the postsynaptic membrane may drive enhanced postsynaptic AChRs aggregation and AChR stability within the postsynaptic membrane. 相似文献
17.
Zuckerman DM Hicks SW Charron G Hang HC Machamer CE 《The Journal of biological chemistry》2011,286(21):19014-19023
S-Palmitoylation of G protein-coupled receptors (GPCRs) is a prevalent modification, contributing to the regulation of receptor function. Despite its importance, the palmitoylation status of the β(1)-adrenergic receptor, a GPCR critical for heart function, has never been determined. We report here that the β(1)-adrenergic receptor is palmitoylated on three cysteine residues at two sites in the C-terminal tail. One site (proximal) is adjacent to the seventh transmembrane domain and is a consensus site for GPCRs, and the other (distal) is downstream. These sites are modified in different cellular compartments, and the distal palmitoylation site contributes to efficient internalization of the receptor following agonist stimulation. Using a bioorthogonal palmitate reporter to quantify palmitoylation accurately, we found that the rates of palmitate turnover at each site are dramatically different. Although palmitoylation at the proximal site is remarkably stable, palmitoylation at the distal site is rapidly turned over. This is the first report documenting differential dynamics of palmitoylation sites in a GPCR. Our results have important implications for function and regulation of the clinically important β(1)-adrenergic receptor. 相似文献
18.
Mohyee E. Eldefrawi Gordon Schweizer Nabil M. Bakry James J. Valdes 《Journal of biochemical and molecular toxicology》1988,3(1):21-32
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-α-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites. 相似文献
19.
阿片受体的研究进展 总被引:13,自引:0,他引:13
阿片及其衍生物在神经系统中具有很强的镇痛作用,对阿片受体的研究已有20多年的历史。20世纪70年代发现了阿片受体的存在并先后发现了脑啡肽、β-内啡肽和强啡肽等阿片肽,随后发现了孤啡肽。如年代3种阿片受体的基因均已克隆成功,氨基酸序列表明它们均属G蛋白偶联受体,为7螺旋跨膜受体家族的成员,具有很高的同源性,功能包括介导腺苷酸环化酶的抑制作用以及一些离子通道的激活和抑制作用等。阿片受体基因的克隆将有利于新型临床药物的开发以及耐受和药物成瘾性分子基础的研究。目前阿片受体基因敲除、计算机结构模拟分析以及寻找新型阿片受体基因的研究均在深入进行。 相似文献
20.
Involvement of mitogen-activated protein kinase in agonist-induced phosphorylation of the mu-opioid receptor in HEK 293 cells 总被引:4,自引:0,他引:4
Agonist exposure of many G protein-coupled receptors stimulates an activation of extracellular signal-regulated protein kinases (ERKs) 1 and 2, members of the mitogen-activated protein kinase (MAPK) family. Here, we show that treatment of human embryonic kidney (HEK) 293 cells stably transfected to express the rat micro-opioid receptor (MOR1) with [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO) stimulated a rapid and transient (3-5-min) activation and nuclear translocation of MAPK. Exposure of these cells to the MAPK kinase 1 inhibitor PD98059 not only prevented MAPK activation but also inhibited homologous desensitization of the mu-opioid receptor. We have therefore determined the effect of PD98059 on agonist-induced mu-receptor phosphorylation. DAMGO stimulated a threefold increase in MOR1 phosphorylation within 20 min that could be reversed by the antagonist naloxone. PD98059 produced a dose-dependent inhibition of agonist-promoted mu-receptor phosphorylation with an IC50 of 20 microM. DAMGO also induced MOR1 internalization that peaked at 30 min. Confocal microscopy revealed that DAMGO-induced MOR1 internalization was also largely inhibited in the presence of PD98059. U0126, another chemically unrelated inhibitor of the MAPK cascade, mimicked the effect of PD98059 on mu-receptor phosphorylation and desensitization. MOR1 itself, however, appears to be a poor substrate for MAPK because mu-receptors immunoprecipitated from stably transfected HEK 293 cells were not phosphorylated by exogenous ERK 2 in vitro. The fact that morphine also triggered MAPK activation but did not induce MOR1 internalization indicates that receptor internalization was not required for MOR1-mediated mitogenic signaling. We conclude that MOR1 stimulates a rapid and intemalization-independent MAPK activation. Activation of the MAPK cascade in turn may not only relay mitogenic signals to the nucleus but also trigger initial events leading to phosphorylation and desensitization of the mu-opioid receptor. 相似文献