共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Pennings JL Schuurhof A Hodemaekers HM Buisman A de Rond LC Widjojoatmodjo MN Luytjes W Kimpen JL Bont L Janssen R 《PloS one》2011,6(6):e21461
Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues. Additionally, we identified blood gene signatures that are indicative of acute infection, secondary immune response, and vaccine-enhanced disease, respectively. Eosinophil-associated ribonucleases were characteristic for the vaccine-enhanced disease blood signature. These results indicate that it may be possible to distinguish protective and unfavorable patient lung responses via blood diagnostics. 相似文献
5.
Nine susceptible gilts were exposed to pseudorabies virus (PrV) by intrauterine inoculation immediately after breeding. Embryos were collected from each of three gilts on days 3, 6, and 10 following exposure to PrV. The number of embryos collected from each gilt was compared with the number of corpora lutea (CL). On days 6 and 10, there were substantially fewer embryos collected than there were CL. The embryos were examined for the presence of viral particles by electron microscopy. PrV was observed in embryos collected at 6 and 10 days following exposure of the gilts. The fluids used to flush the embryos from the uterus during collection were tested for PrV by virus isolation and direct fluorescent antibody procedures. PrV was isolated from the uterine-flush fluids of one of three gilts at each time of embryo collection. 相似文献
6.
7.
8.
9.
The infectious cycles of viruses are known to cause dramatic changes to host cell function. The development of microarray technology has provided means to monitor host cell responses to viral infection at the level of global changes in mRNA levels. We have applied this methodology to investigate gene expression changes caused by a small, icosahedral, single-stranded-RNA phage, PRR1 (a member of the Leviviridae family), on its host, Pseudomonas aeruginosa, at different times during its growth cycle. Viral infection in this system resulted in changes in expression levels of <4% of P. aeruginosa genes. Interestingly, the number of genes affected by viral infection was significantly lower than the number of genes affected by changes in growth conditions during the experiment. Compared with a similar study that focused on the complex, double-stranded-DNA bacterial virus PRD1, it was evident that there were no universal responses to viral infection. However, in both cases, translation was affected in infected cells. 相似文献
10.
Global quantitative proteomic analysis profiles host protein expression in response to Sendai virus infection 下载免费PDF全文
Sheng‐Lin Zhu Xi Chen Liang‐Jie Wang Wei‐Wei Wan Qi‐Lin Xin Wei Wang Gengfu Xiao Lei‐Ke Zhang 《Proteomics》2017,17(5)
Sendai virus (SeV) is an enveloped nonsegmented negative‐strand RNA virus that belongs to the genus Respirovirus of the Paramyxoviridae family. As a model pathogen, SeV has been extensively studied to define the basic biochemical and molecular biologic properties of the paramyxoviruses. In addition, SeV‐infected host cells were widely employed to uncover the mechanism of innate immune response. To identify proteins involved in the SeV infection process or the SeV‐induced innate immune response process, system‐wide evaluations of SeV–host interactions have been performed. cDNA microarray, siRNA screening and phosphoproteomic analysis suggested that multiple signaling pathways are involved in SeV infection process. Here, to study SeV–host interaction, a global quantitative proteomic analysis was performed on SeV‐infected HEK 293T cells. A total of 4699 host proteins were quantified, with 742 proteins being differentially regulated. Bioinformatics analysis indicated that regulated proteins were mainly involved in “interferon type I (IFN‐I) signaling pathway” and “defense response to virus,” suggesting that these processes play roles in SeV infection. Further RNAi‐based functional studies indicated that the regulated proteins, tripartite motif (TRIM24) and TRIM27, affect SeV‐induced IFN‐I production. Our data provided a comprehensive view of host cell response to SeV and identified host proteins involved in the SeV infection process or the SeV‐induced innate immune response process. 相似文献
11.
12.
13.
14.
15.
16.
《Biochimica et Biophysica Acta - Proteins and Proteomics》2018,1866(2):307-315
Bartha, the pseudorabies virus (PRV) vaccine strain, is widely used in studies of neuronal circuit-tracing, due to its attenuated virulence and retrograde spreading. However, we know little regarding the molecular mechanisms of PRV infection and spreading between structurally connected neurons. In this study, we systematically analyzed the host brain proteomes after acute infection with PRV, attempting to identified the proteins involved in the processes. Mice were injected with PRV-Bartha and PRV-Becker (PRV-Bartha's wild-type parent strain) in the olfactory system, the proteomes of the brain and synaptosome were analyzed and compared at various infection intervals using mass spectrometry-based proteomics techniques. In all, we identified > 100 PRV-infection regulated proteins at the whole-tissue level and the synaptosome level. While at whole-tissue level, bioinformatics analyses mapped most of the regulations to the inflammation pathways, at the synaptosome level, most of those to synaptic transmission, cargo transport and cytoskeleton organization. We established regulated protein networks demonstrating distinct cellular regulation pattern between the global and the synaptosome levels. Moreover, we identified a series of potentially PRV-strain-specific regulated proteins with diverse biological functions. This study may provide new clues for molecular mechanisms for PRV infection and spread. 相似文献
17.
Viral RNA is recognized by RIG-I-like receptors and Toll-like receptors. RIG-I is a cytoplasmic viral RNA sensor. High Mobility Group Box (HMGB) proteins and DExD/H box RNA helicases, such as DDX3 and 60, associate with viral RNA. Those proteins promotes the RIG-I binding to viral RNA. RIG-I triggers the signal via IPS-1 adaptor molecule to induce type I IFN. RIG-I harbors Lys63-linked polyubiquitination by Riplet and TRIM25 ubiquitin ligases. The polyubiquitination is essential for RIG-I-mediated signaling. Toll-like receptors are located in endosome. TLR3 recognizes viral double-stranded RNA, and TLR7 and 8 recognize single-strand RNA. Virus has the ability to suppress these innate immune response. For example, to inhibit RIG-I-mediated signaling, HCV core protein suppresses the function of DDX3. In addition, HCV NS3-4A protein cleaves IPS-1 to inhibit the signal. Molecular mechanism of how viral RNA is recognized by innate immune system will make great progress on our understanding of how virus escapes from host immune system. 相似文献
18.
19.