首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The structure of the cloned fragment of wheat (Triticum aestivum L.) TADHN gene encoding dehydrin-like protein was examined. A comparative analysis of nucleotide and deduced amino acid sequences revealed a high homology of this fragment with sequences of the barley dhn8 gene and wheat wcor gene family. In deduced amino acid sequence of the TADHN fragment, a 15-residue region EKKGFLEKIKEKLPG was found, which corresponded to a highly conserved K-segment of dehydrins. Wheat seedling treatment with 3.7 μM ABA and 0.4 μM 24-epibrassinolide exerted similar stimulatory effects on expression of the TADHN gene, which indicates the involvement of dehydrins in the protective action of these phytohormones in wheat plants.  相似文献   

3.
Dehydrins, a subfamily of group 2 LEA proteins, are intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. In this study, we isolated and characterized ZmDHN2b, a maize dehydrin gene. The genomic organization of the ZmDHN2b gene and its expression in maize seedlings were analyzed. To investigate the function of ZmDHN2b, we generated transgenic tobacco plants constitutively overexpressing ZmDHN2b. Ectopic expression of ZmDHN2b in tobacco accelerated seed germination and seedling growth at 15°C. Furthermore, ZmDHN2b-overexpressing lines had lower levels of cold-induced malondialdehyde and less electrolyte leakage than wild-type tobacco at 4°C. These results demonstrated that ZmDHN2b was involved in plant responses to low temperature.  相似文献   

4.
Pea dehydrins: identification,characterisation and expression   总被引:3,自引:0,他引:3  
An antiserum raised against dehydrin from maize (Zea mays) recognised several polypeptides in extracts of pea (Pisum sativum) cotyledons. A cDNA expression library was prepared from mRNA of developing cotyledons, screened with the antiserum and positive clones were purified and characterised. The nucleotide sequence of one such clone, pPsB12, contained an open reading frame which would encode a polypeptide with regions of significant amino acid sequence similarity to dehydrins from other plant species.The deduced amino acid sequence of the pea dehydrin encoded by B12 is 197 amino acids in length, has a high glycine content (25.9%), lacks tryptophan and is highly hydrophilic. The polypeptide has an estimated molecular mass of 20.4 kDa and pI=6.4. An in vitro synthesised product from the clone comigrates with one of the in vivo proteins recognised by the antiserum.A comparison of the pea dehydrin sequence with sequences from other species revealed conserved amino acid regions: an N-terminal DEYGNP and a lysine-rich block (KIKEKLPG), both of which are present in two copies. Unexpectedly, pea dehydrin lacks a stretch of serine residues which is conserved in other dehydrins.B12 mRNA and dehydrin proteins accumulated in dehydration-stressed seedlings, associated with elevated levels of endogenous abscisic acid (ABA). Applied ABA induced expression of dehydrins in unstressed seedlings. Dehydrin expression was rapidly reversed when seedlings were removed from the stress or from treatment with ABA and placed in water.During pea cotyledon development, dehydrin mRNA and proteins accumulated in mid to late embryogenesis. Dehydrin proteins were some of the most actively synthesised at about the time of maximum fresh weight and represent about 2% of protein in mature cotyledons.  相似文献   

5.
Brassica napus L. seedlings responded to low red to far-red (R/FR) ratio by elongating petioles and decreasing leaf expansion. These typical shade avoidance traits were correlated with significantly decreased endogenous indole-3-acetic acid (IAA) levels and significantly increased endogenous abscisic acid (ABA) levels and ethylene production. The transgenic (T) B. napus line bearing the bacterial ACC deaminase gene, did not respond to low R/FR ratio with altered petiole and leaf growth and less ethylene (especially by petioles) was produced. As with WT seedlings, T seedlings had significantly lower IAA levels in both petioles and leaves under low R/FR ratio. However, ABA levels of low R/FR ratio-grown T seedlings either increased (petioles) or were unaltered (leaves). Our results further suggest that low R/FR ratio regulates endogenous IAA levels independently of ethylene, but there may be an interaction between ABA and ethylene in leaf development.  相似文献   

6.
7.
8.
Yao  Chentao  Zhang  Fengwen  Sun  Xiao  Shang  Dianlong  He  Falin  Li  Xiangdong  Zhang  Jiwang  Jiang  Xingyin 《Journal of Plant Growth Regulation》2019,38(4):1300-1313

The objective of this study was to evaluate the ability of the phytohormone S-abscisic acid (S-ABA) to protect maize seedlings grown under drought stress and to measure their increased drought tolerance. The maize hybrids ‘Zhengdan 958’ (ZD958; drought tolerant) and ‘Xundan 20’ (XD20; drought sensitive) were treated with nutrient solutions of different concentrations (1, 2, 4, 8, and 10 mg/kg) of S-ABA under polyethylene glycol (PEG, 15% w/v, MW 6000) simulated drought stress. Optimal concentrations of S-ABA were designed to be sprayed onto the leaves of seedlings, and their effect on endogenous ABA, malondialdehyde (MDA), osmotic substances, antioxidant enzyme activities, and Asr1 gene expression in seedlings were studied. Results indicated that, under drought stress, S-ABA treatment significantly improved maize seed germination rate (GR), germination energy (GE), and seedling biomass (p < 0.05). After spraying 4 mg/kg S-ABA onto leaves, the endogenous hormone ABA, osmotic substances, antioxidant enzyme activities, and expressive quantity of the Asr1 gene were extended and MDA content dropped significantly (p < 0.05). Moreover, ZD 958 endogenous ABA content, osmotic substances content, antioxidant enzyme activity and Asr1 gene expressive quantity were higher than that of XD 20 (p < 0.05). In conclusion, S-ABA treatment increased the content of endogenous ABA, induced an increase in antioxidant enzyme activity and Asr1 gene expression level, reduced the oxidative damage caused by drought to maize leaves, and improved the adaptability of maize seedlings to withstand drought stress. The promoting effect of S-ABA on the drought-tolerant variety ZD 958 was more obvious (p < 0.05). These results serve as a reference for the use of S-ABA in mitigating drought stress in maize.

  相似文献   

9.
Dehydrins are a family of proteins characterised by conserved amino acid motifs, and induced in plants by dehydration or treatment with ABA. An antiserum was raised against a synthetic oligopeptide based on the most highly conserved dehydrin amino acid motif, the lysine-rich block (core sequence KIKEK-LPG). This antiserum detected a novel M r 40 000 polypeptide and enabled isolation of a corresponding cDNA clone, pPsB61 (B61). The deduced amino acid sequence contained two lysine-rich blocks, however the remainder of the sequence differed markedly from other pea dehydrins. Surprisingly, the sequence contained a stretch of serine residues, a characteristic common to dehydrins from many plant species but which is missing in pea dehydrin.The expression patterns of B61 mRNA and polypeptide were distinctively different from those of the pea dehydrins during seed development, germination and in young seedlings exposed to dehydration stress or treated with ABA. In particular, dehydration stress led to slightly reduced levels of B61 RNA, and ABA application to young seedlings had no marked effect on its abundance.The M r 40 000 polypeptide is thus related to pea dehydrin by the presence of the most highly conserved amino acid sequence motifs, but lacks the characteristic expression pattern of dehydrin. By analogy with heat shock cognate proteins we refer to this protein as a dehydrin cognate.  相似文献   

10.
The stress inducibility of dehydrin protein production in seedlingsof castor bean was analysed by subjecting them to ABA and variouswater-deficit-related treatments including desiccation, waterstress, high salt, high osmolarity, and low temperature. A furthergoal was to determine whether the immature seed (at stages priorto major dehydrin synthesis) would respond in a similar mannerto these stresses. A number of dehydrin-like proteins increasedin seedlings subjected to the various stress treatments. Inthe endosperm, these appear to be different from the dehydrin-relatedpolypeptides that are induced during late seed development andwhich persist following germination/growth of mature seeds.In the endosperm of seedlings, ABA, water stress and desiccationinduced the same dehydrin polypeptides, while high osmolarity,high salt and low temperature induced a different set. Stress-specificdifferences in dehydrin synthesis were also found in the cotyledonsand radicle of castor bean seedlings; however, dehydrins indu-cibleby exogenous ABA were consistently produced. Immature seedstreated with ABA or subjected to stress responded by producingdehydrin-like proteins associated with late development; however,the same proteins were induced following detachment of immatureseeds from the parent plant and maintenance on water. When seedlingswere exposed simultaneously to GA and either ABA, high salt,or low temperature, dehydrin production was suppressed. It isconcluded that dehydrin production in castor bean is tissue-specificand is dependent upon the physiological stage of the seed. Inthe endosperm, the response to different stresses may rely uponmore than one signal trans-duction pathway. Key words: Dehydrin, castor bean, ABA, desiccation  相似文献   

11.
Following the screening of a suppression subtractive library developed from durum wheat plants exposed to low temperature for 6 h, two early cold-regulated (e-cor) genes have been isolated. These genes, coding putatively for a ribokinase (7H8) and a C3H2C3 RING-finger protein (6G2), were characterized by the stress-induced retention of a subset of introns in the mature mRNA. This feature was dependent on cold for 7H8 and on cold and dehydration for 6G2. When other genes, such as the stress-related gene WCOR410c, coding for a dehydrin (one intron), or a gene coding for a putative ATP binding cassette transporter (16 introns) were analyzed, no cold-dependent intron retention was observed. Cold-induced intron retention was not observed in mutants defective in the chloroplast development; nevertheless treatment with cycloheximide in the absence of cold was able to promote intron retention for the 7H8 e-cor gene. These results suggest that the cold-induced intron retention reflects the response of the spliceosoma to specific environmental signals transduced to the splicing protein factors through a chloroplast-dependent pathway. Notably, when the 7H8 Arabidopsis orthologous gene was analyzed, no stress induction in terms of mRNA abundance and no cold-dependent intron retention was detected. Otherwise, 6G2 Arabidopsis homologous sequences sharing the same genomic structure of the durum wheat 6G2 showed a similar intron retention event although not strictly dependent on stress.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
A cDNA clone corresponding to a novel low-temperature-induced Arabidopsis thaliana gene, named lti140, was employed for studies of the environmental signals and the signal pathways involved in cold-induced gene expression. The single-copy lti140 gene encodes a 140 kDa cold acclimation-related polypeptide. The lti140 mRNA accumulates rapidly in both leaves and roots when plants are subject to low temperature or water stress or are treated with the plant hormone abscisic acid (ABA), but not by heat-shock treatment. The low-temperature induction of lti140 is not mediated by ABA, as shown by normal induction of the lti140 mRNA in both ABA-deficient and ABA-insensitive mutants and after treatment with the ABA biosynthesis inhibitor fluridone. The effects of low temperature and exogenously added ABA are not cumulative suggesting that these two pathways converge. The induction by ABA is abolished in the ABA-insensitive mutant abi-1 indicating that the abi-1 mutation defines a component in the ABA response pathway. Accumulation of the lti140 mRNA in plants exposed to water stress was somewhat reduced by treatment with fluridone and in the ABA-insensitive mutant abi-1 suggesting that the water stress induction of lti140 could be partly mediated by ABA. It is concluded that three separate but converging signal pathways regulate the expression of the lti140 gene.  相似文献   

13.
14.
ABA has been found to play a significant role in post-embryonic developmental in peanut seedlings. The results from the current study indicate that in the presence of exogenous 10 μmol l−1 ABA, lateral roots (LRs) number decreased and seedling development was delayed. This effect was eliminated by 25 μmol l−1 naproxen, an inhibitor of ABA biosynthesis. The Arabidopsis mutant deficient in ABA biosynthesis, nced3, displays a phenotype with more and longer LRs. We found that ABA decreased root-branching in peanut in a dose-dependent way. ABA-treated seedlings showed higher endogenous ABA levels than the control and naproxen-treated seedlings. RT-PCR results indicated that the expression of AhNCED1, a key gene in the ABA biosynthetic pathway, was significantly up-regulated by exogenous ABA in peanut. The mRNA levels of AhNCED1 began to increase 2 days after ABA treatment. The results from the current study show that ABA inhibits peanut LR development by increasing endogenous ABA contents.  相似文献   

15.
16.
小麦类脱水素的表达、纯化及多克隆抗体的制备   总被引:1,自引:0,他引:1  
脱水素在胚胎发育后期累积,外源脱落酸(ABA)、低温、干旱和其他一些环境条件下能诱导脱水素的产生,尽管植物在脱水条件下脱水素广泛存在于细胞中,但其生化功能仍不清楚.为研究小麦在不同时期脱水素基因的表达情况和生物学功能及抗体制备,以小麦幼芽为材料,经干旱胁迫处理后,提取总RNA,通过RT-PCR得到小麦类脱水素基因片段(WZY1-1),再连接至克隆载体PUCM-T,并成功构建重组表达质粒PET-32a( )-wzy1-1,将阳性重组质粒转化于受体菌BL21(DE3)感受态细胞中,经IPTG诱导表达,进行表达产物的聚丙烯酰胺凝胶电泳(SDS-PAGE)检测.结果表明,表达蛋白位于37ku处,小麦类脱水素基因获得高效表达.表达蛋白经Ni2 琼脂糖凝胶亲和层析和透析袋电洗脱法纯化后,对兔子进行免疫,制备的抗血清通过ELISA检测到较高的多克隆抗体效价.蛋白质印迹结果显示,利用纯化的蛋白质制备的兔抗血清可以很好地和所表达的蛋白质带特异性结合,且郑引1号小麦幼苗进行干旱处理,提取粗蛋白,SDS-PAGE,蛋白质印迹检测显示,在分子质量28ku处出现特异的蛋白质条带,这说明所制备的抗血清可以与小麦叶片所表达的dehydrin蛋白特异性结合,证明其具有良好的免疫原性.  相似文献   

17.
We have characterized cDNAs for two new dhn/lea/rab (dehydrin, late embryogenesis-abundant, responsive to ABA)-related genes from Arabidopsis thaliana. The two genes were strongly induced in plants exposed to low temperature (4 °C) and were accordingly designated lti45 and lti30 (low temperature-induced). The lti45 gene product contains the conserved serine stretch and three lysine-rich repeats characteristic of DHN/LEA/RAB proteins and is very similar to another low temperature-responsive protein of A. thaliana, COR47 [17]. Both proteins have the same repeat structure and an overall amino acid identity of 64%. This structural similarity of the proteins and the tandem array of the genes suggest that this gene pair arose through a duplication. The other polypeptide, LTI30, consists of several lysine-rich repeats, a structure found in CAP85, a low temperature-and water stress-responsive protein in spinach [41] and similar proteins found in wheat [20].The expression pattern of the five dhn/lea/rab-related genes (cor47, dhnX, lti30, lti45 and rab18) identified so far in A. thaliana, was characterized in plants exposed to low temperature, drought and abscisic acid (ABA). Expression of both lti30 and lti45 was mainly responsive to low temperature similar to cor47. The lti45 and lti30 genes show only a weak response to ABA in contrast to cor47, which is moderately induced by this hormone. The three genes were also induced in severely water-stressed plants although the expression of lti30 and lti45 was rather low. In contrast to these mainly low temperature-induced genes, the expression of rab18 was strongly induced both in water-stressed and ABA-treated plants but was only slightly responsive to cold. The dhnX gene showed a very different expression pattern. It was not induced with any of the treatments tested but exhibited a significant constitutive expression. The low-temperature induction of the genes in the first group, lti30 and lti45, is ABA-independent, deduced from experiments with the ABA-deficient (aba-1) and ABA-insensitive (abi1) mutants of A. thaliana, whereas the induction of rab18 is ABA-mediated. The expression of dhnX was not significantly affected in the ABA mutants.  相似文献   

18.
The accumulation of cold-induced dehydrin and proline was related to the frost tolerance (FT) in several Brassica species or cultivars. A dehydrin of molecular mass 47 kDa was detected in the leaves of an Ethiopian mustard (B. carinata) and a pair of dehydrins of similar molecular mass in the three (two winter, one spring) oilseed rape (B. napus) cultivars, when plants were maintained at 4 °C for one-month under two different irradiances. More dehydrin was accumulated in oilseed rape than in Ethiopian mustard under the high irradiance. A significant correlation was observed between leaf dehydrin content and FT, and no relationship between proline content and FT or between the proline and dehydrin contents. Protoplast-derived callus cells behaved differently from leaves sampled from intact plants, as they did not accumulate dehydrin and proline in response to cold stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号