首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 ) and phosphate (PO4 3−) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l−1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 and PO4 3− stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.  相似文献   

2.

Background  

Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. It has been suggested that Caenorhabditis elegans, which has a single β and two α integrins, might reflect the ancestral integrin complement. Investigation of the integrin repertoire of anthozoan cnidarians such as the coral Acropora millepora is required to test this hypothesis and may provide insights into the original roles of these molecules.  相似文献   

3.
The waters surrounding coral reef ecosystems are generally poor in nutrients, yet their levels of primary production are comparable with those reported from tropical rain forests. One explanation of this paradox is the efficient cycling of nutrients between the coral host, its endosymbiotic alga Symbiodinium and a wide array of microorganisms. Despite their importance for the animals' fitness, the cycling of nutrients in early coral life stages and the initial establishment of partnerships with the microbes involved in these processes has received little scrutiny to date. Nitrogen is an essential but limited nutrient in coral reef ecosystems. In order to assess the early nutrient exchange between bacteria and corals, coral larvae of the species Pocillopora damicornis were incubated with two coral‐associated bacteria (Alteromonas sp., or Vibrio alginolyticus), prelabeled with the stable nitrogen isotope 15N. The incorporation and translocation of nitrogen from Vibrio‐ and Alteromonas bacteria into P. damicornis coral larvae and specifically into the coral‐symbiotic Symbiodinium were detected by nanoscale secondary ion mass spectrometry (NanoSIMS). A significant increase in the amount of enriched 15N (two to threefold compared to natural abundance) was observed in P. damicornis larvae within 8 h of incubation for both bacterial treatments (one‐way ANOVA, F5,53 = 18.03, P = 0.004 for Alteromonas sp. and F5,53 = 18.03, P = 0.0001 for V. alginolyticus). These findings reveal that coral larvae acquire nutrients previously taken up from the environment by bacteria. The additional nitrogen may increase the survival rate and fitness of the developing coral and therefore contribute to the successful maintenance of coral reefs.  相似文献   

4.

Background  

Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria.  相似文献   

5.

Aim

The aims were to test the role of temperature in latitudinal patterns of egg size and investigate maternal investment trade-offs among coral taxa.

Location

Global, from 34° S to 34° N.

Time period

1981–2020.

Major taxa studied

Reef coral species from the order Scleractinia.

Methods

We compiled a comprehensive geo-referenced global dataset of egg sizes (diameter or volume) and fecundity (number of eggs per area) for colonial corals (Scleractinia; 123 species, 5359 observations and 39 localities), substantially enhanced by new field collections (>88% of observations). We used Bayesian phylogenetic multilevel models to test for Rass' rule (a hypothesized negative relationship between egg size and temperature); we also included other environmental variables and life history traits. We also tested whether a trade-off exists between egg size and fecundity in broadcast spawning hermaphroditic corals with horizontal symbiont transmission (HHT).

Results

We found a significant relationship between coral egg size and symbiont transmission. Eggs from coral species with vertical symbiont transmission were c. 18.8% smaller than those from species with horizontal symbiont transmission. We also found non-significant relationships between egg size and sea surface temperature (SST) for broadcast spawning corals and between egg size and fecundity specifically for HHT species.

Main conclusions

Contrary to recognized latitudinal patterns of egg size across taxa, our study does not provide support for Rass' rule in corals. Additionally, our findings do not support a maternal investment trade-off between egg size and fecundity for HHT species. Our study used a phylogenetic framework that should be a standard practice when studying interspecific variation, including investigation of maternal investment and identification of the influence of multiple predictors on larval fitness (egg size), in addition to trade-offs affecting propagule influx (fecundity). Both these functional traits are vital and have direct consequences for population maintenance and connectivity in sessile organisms, such as corals.  相似文献   

6.
Clode PL  Marshall AT 《Protoplasma》2003,220(3-4):153-161
Summary.  Field emission scanning electron microscopy of frozen-hydrated preparations of the scleractinian coral Galaxea fascicularis revealed organic fibrils which have a diameter of 26 nm and are located between calicoblastic ectodermal cells and the underlying CaCO3 skeleton. Small (37 nm in diameter) nodular structures observed upon this fibrillar organic material possibly correspond to localised Ca-rich regions detected throughout the calcifying interfacial region of freeze-substituted preparations by X-ray microanalysis. We propose that these Ca-rich regions associated with the organic material are nascent crystals of CaCO3. Significant amounts of S were also detected throughout the calcifying interfacial region, further verifying the likely presence of organic material. However, the bulk of this S is unlikely to be derived from mucocytes within the calicoblastic ectoderm. It is suggested that in the scleractinian coral G. fascicularis, nodular crystals of CaCO3 establish upon a fibrillar, S-containing, organic matrix within small but distinct extracellular pockets formed between calicoblastic ectodermal cells and skeleton. This arrangement conforms with the criteria necessary for biomineralisation and with the long-held theory that organic matrices may act as templates for crystal formation and growth in biological mineralising systems. Received April 30, 2002; accepted September 11, 2002; published online March 11, 2003  相似文献   

7.
8.

Background  

Aspergillus niger is a filamentous fungus found in the environment, on foods and feeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium.  相似文献   

9.

Background  

The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis.  相似文献   

10.

Background  

The mitochondrial DNA (mtDNA) of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin), by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans) known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea).  相似文献   

11.
High concentrations of acrylate, 542–683 μmol g−1 of the non-skeletal dry mass (DM), were measured in the Great Barrier Reef coral, Acropora millepora, using quantitative nuclear magnetic resonance spectroscopy (qNMR). As the amount of NaCl salt in the samples was substantial but variable, the total carbon (TC) in the coral extracts was determined, and the carbon due to acrylate found to represent 13–15% of the TC present in the total organic extracts (TOE). Acrylate, a C3 compound, is thus a substantial carbon source in the coral holobiont and is known to be derived from dimethylsulfoniopropionate (DMSP), which has previously been found in corals and other organisms that harbor Symbiodinium spp. The reason for such high levels of acrylate in the corals is unknown; possible functions include antimicrobial and/or antioxidant roles, as well as playing a role in the structuring of the healthy resident coral bacteria.  相似文献   

12.

Background  

Ethylene is a widely distributed alkene product which is formed enzymatically (e.g., in plants) or by photochemical reactions (e.g., in the upper oceanic layers from dissolved organic carbon). This gaseous compound was recently found to induce in cells from the marine sponge Suberites domuncula, an increase in intracellular Ca2+ level ([Ca2+]i) and an upregulation of the expression of two genes, the potential ethylene-responsive gene, SDERR, and a Ca2+/calmodulin-dependent protein kinase.  相似文献   

13.

Background  

The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of possible matrix proteins at the gene level, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy, proteomic analysis.  相似文献   

14.
This study is a biochemical and molecular analysis of the soluble organic matrix (SOM) of two Scleractinian corals differing in their morphological characteristics: Stylophora pistillata, a branched robust coral and Pavona cactus, a leafy complex coral. Soluble organic matrix of both coral species were shown to contain high amounts of potentially acidic amino acids and glycine. However, proportions of glycosaminoglycans and SDS-PAGE analyses of soluble organic matrix proteins were very different. Three proteins of S. pistillata and at least five proteins of P. cactus were detected by silver staining, some of them being able to bind calcium. Internal peptide sequences of two matrix proteins (one from each species) were obtained. One sequence of S. pistillata is unusual because it contains a long poly-aspartate domain, as described in proteins belonging to the calsequestrin family and in proteins from molluscan species. This domain suggests an essential role for this protein in the control of mineralization.  相似文献   

15.
Yang  Qingsong  Zhang  Wenqian  Zhang  Ying  Tang  Xiaoyu  Ling  Juan  Zhang  Yanying  Dong  Junde 《Coral reefs (Online)》2022,41(1):223-235

Larval settlement is a critical bottleneck in the process of coral sexual propagation. Promoting coral larval settlement by inducers is a promising strategy in coral reef restoration engineering. In this study, the settlement-promoting effect of Ca2+ on larvae of the brooding coral Pocillopora damicornis was investigated for the first time. Treatment with 40 mM CaCl2 for 24 h effectively promoted coral larval settlement (~ 80%). Moreover, CaCl2 is comparable with the natural inducer, crustose coralline algae (CCA), in both promoting coral larval settlement and post-settlement growth. CaCl2 showed toxic effects on larval survival and growth at high concentrations, and this could be minimized by optimizing CaCl2 concentration and shortening the exposure period. Our study suggests that applying Ca2+ to effectively and efficiently induce coral larval settlement is viable for laboratory research and small-scale aquaculture systems, and it might become a useful tool in future coral reef restoration engineering.

  相似文献   

16.
Particulate organic matter (POM) and dissolved organic carbon (DOC) release by six dominant hermatypic coral genera (Acropora, Fungia, Goniastrea, Millepora, Pocillopora and Stylophora) were measured under undisturbed conditions by laboratory incubations during four seasonal expeditions to the Northern Red Sea. In addition, the influence of environmental factors (water temperature, light availability and ambient inorganic nutrient concentrations) was evaluated. Particulate organic carbon (POC) and particulate nitrogen (PN) release were always detectable and genus-specific, with Stylophora releasing most POM (6.5 mg POC and 0.5 mg PN m−2 coral surface area h−1) during all seasons. The fire coral Millepora released significantly less POM (0.3 mg POC and 0.04 mg PN m−2 coral surface area h−1) than all investigated anthozoan genera. The average POC:PN ratio of POM released by all coral genera was 12 ± 1, indicating high carbon/low nitrogen content of coral-derived organic matter. POM release showed little seasonal variation, but average values of POC and PN release rates correlated with water temperature, light availability and ambient nitrate concentrations. DOC net release and elevated DOC:POC ratios were detectable for Acropora, Goniastrea and Millepora, revealing maximum values for Acropora (30.7 mg DOC m−2 coral surface area h−1), whilst predominant DOC uptake was observed for Pocillopora, Fungia and Stylophora. Depth-mediated light availability influenced DOC fluxes of Acropora and Fungia, while fluctuations in water temperature and ambient inorganic nutrient concentrations showed no correlation. These comprehensive data provide an important basis for the understanding of coral reef organic matter dynamics and relevant environmental factors.  相似文献   

17.
In situ mucus release by Acropora nobilis and degradation of mucus from A. nobilis and Acropora formosa, by heterotrophic bacteria were investigated at Bidong and Tioman Island, Malaysia. Mucus release rate for A. nobilis was on average 38.7 ± 35.2 mg C m−2 h−1, of which ca. 70% consisted of dissolved organic carbon (DOC) and 30% particulate organic carbon (POC). In the mucus degradation experiment, seawater-mucus mixtures were incubated and compared with control runs for 24 h. Bacterial abundance in the seawater-mucus mixture increased significantly and coincided with a decline in DOC concentration. In controls, bacteria and DOC did not significantly change. The coral mucus had a high content of inorganic phosphate. It is suggested that the coral mucus rich in DOC and phosphate can induce the high bacterial growth.  相似文献   

18.

Background  

Quarter milk samples from cows with high risk of intramammary infection were examined to determine the prevalence of Staphylococcus aureus (SA) and penicillin resistant SA (SAr) in conventional and organic dairy herds and herds converting to organic farming in a combined longitudinal and cross-sectional study.  相似文献   

19.

Background  

Acidity is an essential component of the organoleptic quality of fleshy fruits. However, in these fruits, the physiological and molecular mechanisms that control fruit acidity remain unclear. In peach the D locus controls fruit acidity; low-acidity is determined by the dominant allele. Using a peach progeny of 208 F2 trees, the D locus was mapped to the proximal end of linkage group 5 and co-localized with major QTLs involved in the control of fruit pH, titratable acidity and organic acid concentration and small QTLs for sugar concentration. To investigate the molecular basis of fruit acidity in peach we initiated the map-based cloning of the D locus.  相似文献   

20.

Background  

Skin is the largest organ in the body, and is directly exposed to extrinsic assaults. As such, the skin plays a central role in host defense and the cutaneous immune system is able to elicit specific local inflammatory and systemic immune responses against harmful stimuli. 12-O-tetradecanoylphorbol-13-acetate (TPA) can stimulate acute and chronic inflammation and tumor promotion in skin. TPA-induced dermatitis is thus a useful in vivo pharmacological platform for drug discovery. In this study, the inhibitory effect of briarane-type diterpenes (BrDs) from marine coral Briareum excavatum on TPA-induced dermatitis and dendritic cell (DC) function was explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号