首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proline residues play a special role in shaping the secondary and tertiary structures of proteins. Many of these aspects have been studied in great detail. Current interest lies in elucidating the structure of right-handed alpha-helical fragments which contain proline in the middle of the helix. Such structures play an important role in membrane proteins and in the tight packing of globular proteins. Analysis of several crystal structures and energy minimization using flexible geometry have elucidated the nature of the bend produced by proline in the right-handed alpha-helical structure. Molecular dynamics (MD) simulation studies are ideally suited to characterize rigidity or flexibility in different parts of the molecule and can also give an idea of various conformations of the molecule which can exist at a given temperature. Hence, MD studies on Ace-(Ala)6-Pro-(Ala)3-NHMe have been carried out for 100 ps after equilibration and the resulting trajectories have been analyzed. Information regarding the average values, r.m.s. fluctuations of internal parameters and the time spent in different conformations are discussed. Energy minimization has been carried out on selected MD simulated points in order to analyze the characteristics of different conformations.  相似文献   

2.
Valinomycin is a highly flexible cyclic dodecadepsipeptide that transports ions across membranes. Such a flexibility in the conformation is required for its biological function since it has to encounter a variety of environments and liganding state. Exploration of conformational space of this molecule is therefore important and is one of the objectives of the present study that has been carried out by means of high temperature Molecular Dynamics. Further, the stability of the known bracelet-like structure of the uncomplexed valinomycin and the inherent flexibility around this structure has been investigated. The uncomplexed form of valinomycin has been simulated at 75-100 K for 1 ns in order to elucidate the average conformational properties. An alanine-analog of valinomycin has been simulated under identical conditions in order to evaluate the effect of sidechain on the conformational properties, The studies confirm the effect of sidechain on conformational equilibrium.  相似文献   

3.
B Mao 《Biophysical journal》1991,60(3):611-622
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified.  相似文献   

4.
C3 is a chimera from human β-defensins 2 and 3 and possesses higher antimicrobial activity compared with its parental molecules, so it is an attractive candidate for clinical application of antimicrobial peptides. In continuation with the previous studies, molecular dynamics (MD) simulations were carried out for further investigating the effect of ambient environments (temperature and bacterial membrane) on C3 dynamics. Our results reveal that C3 has higher flexibility, larger intensity of motion, and more relevant secondary structural changes at 363 K to adapt the high temperature and maintain its antimicrobial activity, comparison with it at 293 K; when C3 molecule associates with the bacterial membrane, it slightly fluctuates and undergoes local conformational changes; in summary, C3 molecule demonstrates stable conformations under these environments. Furthermore, MD results analysis show that the hydrophobic contacts, the hydrogen bonds, and disulfide bonds in the peptide are responsible for maintaining its stable conformation. In addition, our simulation shows that C3 peptides can make anionic lipids clustered in the bacterial membrane; it means that positive charges and pronounced regional cationic charge density of C3 are most key factors for its antimicrobial activity.  相似文献   

5.
Mass-weighted molecular dynamics simulation of cyclic polypeptides.   总被引:1,自引:0,他引:1  
B Mao  G M Maggiora  K C Chou 《Biopolymers》1991,31(9):1077-1086
A modified molecular dynamics (MD) method in which atomic masses are weighted was developed previously for studying the conformational flexibility of neuroregulating tetrapeptide Phe-Met-Arg-Phe-amide (FMRF-amide). The method has now been applied to longer and constrained molecules, namely a disulfide-linked cyclic hexapeptide, c[CYFQNC], and its linear and "pseudo-cyclic" analogues. The sampling of dehedral conformational space of teh linear hexapeptide in mass-weighted MD simulations was found to be improved significantly over conventional MD simulations, as in the case of the shorter FMRF-amide molecule studied previously. In the cyclic hexapeptide, the internal constraint of the molecule due to the intramolecular disulfide bond (hence the absence of free terminals in the molecule) does not adversely affect the significant improvement of conformational sampling in mass-weighted MD simulations over normal MD simulations. The pseudo-cyclic polypeptide is identical to the linear CYFQNC molecule in amino acid sequence (i.e., side chains of the cysteine residues are reduced), but the positions of its two terminal heavy atoms were held fixed in space such that the molecule has a nearly cyclic conformation. For this molecule, the mass-weighted MD simulation generated a wide range of polypeptide backbone conformations covering the internal dihedral degrees of freedom; moreover, the physical space of the pseudo-cyclic structure was also sampled in a complete revolution of the entire molecular fragment about the two fixed termini during the simulation. These characteristics suggest that mass-weighted MD can also be an extremely useful method for conformational analyses of constrained molecules and, in particular, for modeling loops on protein surfaces.  相似文献   

6.
Fifteen independent 1-nsec MD simulations of fully solvated Ca(2+) saturated calmodulin (CaM) mutant D129N were performed from different initial conditions to provide a sufficient statistical basis to gauge the significance of observed dynamical properties. In all MD simulations the four Ca(2+) ions remained in their binding sites, and retained a single water ligand as observed in the crystal structure. The coordination of Ca(2+) ions in EF-hands I, II, and III was sevenfold. In EF-hand IV, which was perturbed by the mutation of a highly conserved Asp129, an anomalous eightfold Ca(2+) coordination was observed. The Ca(2+) binding loop in EF-hand II was observed to dynamically sample conformations related to the Ca(2+)-free form. Repeated MD simulations implicate two well-defined conformations of Ca(2+) binding loop II, whereas similar effect was not observed for loops I, III, and IV. In 8 out of 15 MD simulations Ca(2+) binding loop II adopted an alternative conformation in which the Thr62 >C=O group was displaced from the Ca(2+) coordination by a water molecule, resulting in the Ca(2+) ion ligated by two water molecules. The alternative conformation of the Ca(2+) binding loop II appears related to the "closed" state involved in conformational exchange previously detected by NMR in the N-terminal domain fragment of CaM and the C-terminal domain fragment of the mutant E140Q. MD simulations suggest that conformations involved in microsecond exchange exist partially preformed on the nanosecond time scale.  相似文献   

7.
The conformation of the C-terminal octapeptide fragment of Substance P (SP4-11, Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2) has been investigated by 2D-NMR and MD methods. The octapeptide exists in a blend of conformations. The molecule seems to shuttle between conformations with gamma-bends either at Phe5 or Gly6 or Gln3 or Leu7 and between a nearly extended structure.  相似文献   

8.
The theoretical conformational analysis of glycine tripeptide (GT) has been carried out by molecular dynamics (MD) method in order to find minimum energy conformations. The MD studies on GT with water have been carried out for over 10 ns with a time step of 2 fs using fixed charge force field (AMBER ff03). By adding the solvation effect using water as a solvent, the GT conformers identified in this study exhibit α-helical conformation. Compared with the earlier reports, this MD study is able to identify the energetically favourable GT conformations. The obtained geometry of the five most stable GT conformations was optimised using the density functional theory method at B3LYP/6-311G** level of theory. Subsequently, the effects of solvation on the conformational characteristics of five most stable GT conformers with four water molecules (the number of water molecules in the first solvation shell of GT obtained from MD study) were investigated using the same method and the same level of theory. The effect of microsolvation on the fifth GT conformer has been studied with a cluster of 11 water molecules as the first hydration shell which generates folded structure. The interaction energies of all the complexes are calculated by correcting the basis set superposition error. The strong hydrogen bond mainly contributes to the interaction energies. The atoms in molecules theory and natural bond orbital analysis were used to study the origin of H-bonds. A good correlation between the structural parameters and the properties of charge density is found. NMR calculations show that the C = O carbons of the amine groups of the first and middle glycine fragments have maximum chemical shifts.  相似文献   

9.
CstII, a bifunctional (α2,3/8) sialyltransferase from Campylobacter jejuni, is a homotetramer. It has been reported that mutation of the interface residues Phe121 (F121D) or Tyr125 (Y125Q) leads to monomerization and partial loss of enzyme activity, without any change in the secondary or tertiary structures. MD simulations of both tetramer and monomer, with and without bound donor substrate, were performed for the two mutants and WT to understand the reasons for partial loss of activity due to monomerization since the active site is located within each monomer. RMSF values were found to correlate with the crystallographic B-factor values indicating that the simulations are able to capture the flexibility of the molecule effectively. There were no gross changes in either the secondary or tertiary structure of the proteins during MD simulations. However, interface is destabilized by the mutations, and more importantly the flexibility of the lid region (Gly152-Lys190) is affected. The lid region accesses three major conformations named as open, intermediate, and closed conformations. In both Y121Q and F121D mutants, the closed conformation is accessed predominantly. In this conformation, the catalytic base His188 is also displaced. Normal mode analysis also revealed differences in the lid movement in tetramer and monomer. This provides a possible explanation for the partial loss of enzyme activity in both interface mutants. The lid region controls the traffic of substrates and products in and out of the active site, and the dynamics of this region is regulated by tetramerization. Thus, this study provides valuable insights into the role of loop dynamics in enzyme activity of CstII.  相似文献   

10.
The lowest energy conformations for the glycyladenylate molecule are predicted for the first time by a quantum mechanical method of conformational analysis (Extended Hückel Theory). This paper is the continuation of our previous work on the common skeleton of all the aminoacyladenylates; it treats the simultaneous study of the two rotations around the phosphate group. These studies have shown that glycyladenylate presents a flexibility correlated with both the 5′ AMP and the glycine conformations. The number of energy minima, equal to seven when 5′ AMP is in ANTI gt conformation, is restricted when the conformation becomes ANTI gg; this fact is due, for this last 5′ AMP conformation, to a steric obstacle between the adenine base and the sugarphosphate-glycine chain. The knowledge of the possible configurations can constitute a first step towards the understanding of the recognition process between the glycyladenylate molecule and the glycyladenylate t-RNA synthetase.  相似文献   

11.
Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by F?rster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions.  相似文献   

12.
A molecular dynamics simulation of the Sm binding site from human U4 snRNA was undertaken to determine the conformational flexibility of this region and to identify RNA conformations that were important for binding of the Sm proteins. The RNA was fully-solvated (>9,000 water molecules) and charge neutralized by inclusion of potassium ions. A three nanosecond MD simulation was conducted using AMBER with long-range electrostatic forces considered using the particle mesh Ewald summation method. The initial model of the Sm binding site region had the central and 3' stem-loops that flanked the Sm site co-axial with one another, and with the single-stranded Sm binding site region ([I] conformation). During the course of the trajectory, the axes of the 3' stem-loop, and later the central stem-loop, became roughly orthogonal from their original anti-parallel orientation. As these conformational changes occurred, the snRNA adopted first an [L] conformation, and finally a [U] conformation. The [U] conformation was more stable than either the [I] or [L] conformations, and persisted for the final 1 ns of the trajectory. Analysis of the structure resulting from the MD simulations revealed the bulged nucleotide, U114, and the mismatched Ag91-G110 base pair provided distinctive structural features that may enhance Sm protein binding. Based on the results of the MD simulation and the available experimental data, we proposed a mechanism for the binding of the Sm protein sub-complexes to the snRNA. In this model, the D1/D2 and E/F/G Sm protein sub-complexes first bind the snRNA in the [U] conformation, followed by conformational re-arrangement to the [I] conformation and binding of the D3/B Sm protein sub-complex.  相似文献   

13.
Conformational flexibility of tuftsin molecule is studied using all-atom based atom-atom potential and systematic search, simulated annealing molecular dynamics (SAMD) and molecular dynamics (MD) techniques. Latter was carried out for 650 pico seconds (ps) using AMBER 4.0 with explicit water in TIP3P model. Number of inter-atomic distances and torsional angles were monitored during SAMD and MD simulation. We found that tuftsin molecule, irrespective of any starting conformation, assumes highly folded structure with strong electrostatic interaction between Lys-2 NH3 and Arg-4 carboxylic group and weak hydrogen bond between Lys-2 CO and Arg-4 NH atoms. It had distorted but stable conformation close to inverse gamma turn.  相似文献   

14.
Abstract

The conformation of the C-terminal octapeptide fragment of Substance P (SP4-11, Pro-GlnGln-Phe-Phe-Gly-Leu-Met-NH2) has been investigated by 2D-NMR and MD methods. The octapeptide exists in a blend of conformations. The molecule seems to shuttle between conformations with y-bends either at Phe5 or Gly6 or Gln3 or Leu7 and between a nearly extended structure.  相似文献   

15.
The adsorption of glycated human serum albumin (gHSA)-selective DNA aptamer, where gHSA is a diabetes biomarker, on a mobile graphene in electrolyte and salt-free solutions has been investigated using molecular dynamics (MD) simulations. This work was done to benefit the development of diabetes graphene-based fluorescent aptasensor. For aptasensor, an aptamer is quenched upon GRA binding and becomes fluorescent when leaving and binding to its analyte (gHSA). Different DNA conformations are obtained due to the GRA flexibility. Apart from a single-side deposition, the clipping DNA conformation is obtained. Our results show the faster DNA adsorption under a salt condition. Landing onto GRA with different aptamer parts affects adhered DNA conformations. The clipping conformation is found when the mid of aptamer is firstly deposited on a GRA surface. In contrast, if both 3′ and 5′ termini arrive together, they act as legs to stand on a GRA sheet generating the U-loop like structure before collapsing. Like other studies, laying flat onto a GRA sheet is the most favourable. The high nucleobase-GRA contacts and highly water-exposed phosphate backbone are observed. This implies key roles of nucleobases for GRA adsorption and a phosphate backbone for binding analytes and triggering further desorption.  相似文献   

16.
Crystal packing calculations have been carried out on a substantial number of conformations of Leu-enkephalin; namely, those obtained both from crystal structures and from energy minimizations on isolated molecules, and with and without waters of crystallization. The known crystal structures represent the most energetically stable packings found. The conformations of the enkephalin molecules in the crystal are not the most stable for an isolated molecule; i.e. intermolecular interactions force the isolated molecule to change conformation in order to achieve a small packing volume and an optimal packing energy in the crystal. It is found that the packing energy of an enkephalin molecule is a reasonably smooth function of its molecular volume in the unit cell, if structures with intermolecular hydrogen bonding are excluded, and is substantially independent of other details of the molecular conformation or of the crystal packing. Hydrogen bonding provides additional stabilization of the crystal structure, and would likely permit crystallization of the system if it is sufficiently dense. Solvent molecules further stabilize the structure when they can also provide intermolecular hydrogen bonds.  相似文献   

17.
T-cell adhesion is mediated by an ICAM-1/LFA-1 interaction; this interaction plays a crucial role in T-cell activation during immune response. LBE peptide, which is derived from the beta-subunit of LFA-1, has been shown to inhibit ICAM-1/LFA-1-mediated T-cell adhesion. In this work, we studied the solution conformations of LBE peptide and its reverse sequence (EBL) by NMR, CD and molecular dynamics simulations. Reverse peptides have been used as controls in biological studies. The effect of reversing the sequence of LBE to EBL peptides on their respective conformations is important in understanding their biological properties in vitro or in vivo. The NMR studies for these peptides were carried out in water and in TFE/water solvent systems. In 40% TFE/water, both peptides exhibited helical conformation. CD studies suggested that the LBE exhibits 30% helical conformation, while the EBL exhibits 20% helical conformation. From the NMR and MD simulation studies, it was evident that the peptides exhibited a stable helical conformation; a stable helical structure was found at Leu6 to Leu15 for LBE and at Gly9 to Leu17 for EBL. The helical conformations of LBE and EBL may be in equilibrium with other possible conformers; the other conformers contain loop and turn structures. Both peptides bind to divalent cations because the LBE is derived from the cation-binding region of the LFA-1. This study shows that reversing the peptide sequence did not alter the secondary structure of the corresponding sequence. Hence, caution must be exercised when using reverse peptides as controls in biological studies. This report will improve our ability to design a better inhibitor of ICAM-1/LFA-1 interaction.  相似文献   

18.
CD studies carried out on A23187 indicate a solvent-dependent conformation for the free acid. Alkali metal ions were found to bind to the ionophore weakly. Divalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+ and Co2+ and trivalent lanthanide metal ions like La3+ were found to form predominantly 2:1 (ionophore-metal ion) complexes at low concentrations of metal ions, but both 2:1 and 1:1 complexes were formed with increasing salt concentration. Mg2+ and Co2+ exhibit similar CD behaviour that differs from that observed for the other divalent and lanthanide metal ions. The structure of 2:1 complexes involves two ligand molecules coordinated to the metal ion through the carboxylate oxygen, benzoxazole nitrogen and keto-pyrrole oxygen from each ligand molecule along with one or more solvent molecules. Values of the binding constant were determined for 2:1 complexes of the ionophore with divalent and lanthanide metal ions.  相似文献   

19.
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.  相似文献   

20.
The clarification of the physico-chemical determinants underlying amyloid deposition is critical for our understanding of misfolding diseases. With this purpose we have performed a systematic all-atom molecular dynamics (MD) study of a series of single point mutants of the de novo designed amyloidogenic peptide STVIIE. Sixteen different 50ns long simulations using explicit solvent have been carried out starting from four different conformations of a polymeric six-stranded beta-sheet. The simulations have provided evidence for the influence of a small number of site-specific hydrophobic interactions on the packing and stabilization of nascent aggregates, as well as the interplay between side-chain interactions and the net charge of the molecule on the strand arrangement of polymeric beta-sheets. This MD analysis has also shed light into the origin of the position dependence on mutation of beta-sheet polymerization that was found experimentally for this model system. Our results suggest that MD can be applied to detect critical positions for beta-sheet aggregation within a given amyloidogenic stretch. Studies similar to the one presented here can guide site-directed mutations or the design of drugs that specifically disrupt the key stabilizing interactions of beta-sheet aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号