共查询到20条相似文献,搜索用时 31 毫秒
1.
Footprinting is one of the simplest and most accurate approaches to investigate structure and interaction of biopolymers. It is based on the more difficult accessibility of intra- and intermolecular contacts for external damaging agents. According to this method, one end of polymer molecules is labeled before a sample is incubated with a damaging agent. The distribution of split products is used to conclude on the accessibility of different polymer regions under specific conditions. A variety of enzymatic and chemical splitting agents are used for footprinting. Currently, the highest temporal and spatial resolution without profound specificity to a nucleotide sequence can be reached with the use of hydroxyl radicals. A new variant of this approach, which suggests the use of DNA fluorescent labeling together with the present-day quantitative analysis, will allow extending the method’s boundaries. 相似文献
2.
《Biochimica et Biophysica Acta - Proteins and Proteomics》2022,1870(2):140735
Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) – haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation. FPOP footprinting using a timsTOF Pro mass spectrometer revealed structural information for 84 and 76 residues in Hp and Hb, respectively, including statistically significant differences in the modification extent below 0.3%. The most affected residues upon complex formation were Met76 and Tyr140 in Hbα, and Tyr280 and Trp284 in Hpβ. The data allowed determination of amino acids directly involved in Hb – Hp interactions and those located outside of the interaction interface yet affected by the complex formation. Also, previously modeled interaction between Hb βTrp37 and Hp βPhe292 was not confirmed by our data. Data are available via ProteomeXchange with identifier PXD021621. 相似文献
3.
4.
Complexes between 16S rRNA and purified ribosomal proteins, either singly or in combination, were assembled in vitro and probed with hydroxyl radicals generated from free Fe(II)-EDTA. The broad specificity of hydroxyl radicals for attack at the ribose moiety in both single- and double-stranded contexts permitted probing of nearly all of the nucleotides in the 16S rRNA chain. Specific protection of localized regions of the RNA was observed in response to assembly of most of the ribosomal proteins. The locations of the protected regions were in good general agreement with the footprints previously reported for base-specific chemical probes, and with sites of RNA-protein crosslinking. New information was obtained about interaction of ribosomal proteins with 16S rRNA, especially with helical elements of the RNA. In some cases, 5' or 3' stagger in the protection pattern on complementary strands suggests interaction of proteins with the major or minor groove, respectively, of the RNA. These results reinforce and extend previous data on the localization of ribosomal proteins with respect to structural features of 16S rRNA, and offer many new constraints for three-dimensional modeling of the 30S ribosomal subunit. 相似文献
5.
In vivo K-edge imaging with synchrotron radiation. 总被引:2,自引:0,他引:2
H Elleaume A M Charvet G Le Duc F Estève B Bertrand S Corde R Farion J L Lefaix J J Leplat P Berkvens G Berruyer T Brochard Y Dabin A Draperi S Fiedler C Nemoz M Perez M Renier P Suortti W Thomlinson J F Le Bas 《Cellular and molecular biology, including cyto-enzymology》2000,46(6):1065-1075
We present in this paper two imaging techniques using contrast agents assessed with in vivo experiments. Both methods are based on the same physical principle, and were implemented at the European Synchrotron Radiation Facility medical beamline. The first one is intravenous coronary angiography using synchrotron radiation X-rays. This imaging technique has been planned for human studies in the near future. We describe the first experiments that were carried out with pigs at the ESRF. The second imaging mode is computed tomography using synchrotron radiation on rats bearing brain tumors. Owing to synchrotron radiation physical properties, these new imaging methods provide additional information compared to conventional techniques. After infusion of the contrast agent, it is possible to derive from the images the concentration of the contrast agent in the tumor area for the computed tomography and in any visible vessel for the angiography method. 相似文献
6.
Hydroxyl radical footprinting of the sequence-selective binding of netropsin and distamycin to DNA 总被引:9,自引:0,他引:9
Hydroxyl radicals, generated by allowing an iron (II).EDTA complex to react with hydrogen peroxide, have been employed to cleave the 160-base pair tyrT DNA fragment in the presence and absence of the minor groove-binding antibiotics netropsin and distamycin A. The control DNA cleavage pattern is practically independent of nucleotide sequence, which overcomes certain limitations of other footprinting techniques, so that additional information can be gained about the AT-rich sequence preference of the minor groove-binding ligands. 相似文献
7.
Dauter Z 《Progress in biophysics and molecular biology》2005,89(2):153-172
In recent years, number of X-ray synchrotron beam lines dedicated to collecting diffraction data from macromolecular crystals has exceeded 50. Indeed, today most protein and nucleic acid crystal structures are solved and refined based on the synchrotron data. Collecting diffraction data on a synchrotron beam line involves many technical points, but it is not a mere technicality. Even though the available hardware and software have become more advanced and user-friendly, it is always beneficial if the experimenter is aware of the problems involved in the data collection process and can make informed decisions leading to the highest possible quality of the acquired diffraction data. Various factors, important for the success of data collection experiments and their relevance for different kinds of applications, are discussed. 相似文献
8.
Barbara J. Panessa-Warren 《Biological trace element research》1987,12(1):167-183
Soft X-ray contact microscopy with synchrotron radiation offers the biologist, and especially the microscopist, a way to morphologically
study specimens that could not be imaged by conventional TEM, STEM, or SEM methods (i.e., hydrated samples, samples easily
damaged by an electron beam, electron-dense samples, thick specimens, unstained, low-contrast specimens) at spatial resolutions
approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample
as well. Although flash X-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense
radiation that can be tuned to select specific discrete ranges of X-ray wavelengths or specific individual wavelengths that
optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of X-ray contact
microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological
samples. 相似文献
9.
10.
11.
Ravelli RB Leiros HK Pan B Caffrey M McSweeney S 《Structure (London, England : 1993)》2003,11(2):217-224
The use of third generation synchrotron sources has led to renewed concern about the effect of ionizing radiation on crystalline biological samples. In general, the problem is seen as one to be avoided. However, in this paper, it is shown that, far from being a hindrance to successful structure determination, radiation damage provides an opportunity for phasing macromolecular structures. This is successfully demonstrated for both a protein and an oligonucleotide, by way of which complete models were built automatically. The possibility that, through the exploitation of radiation damage, the phase problem could become less of a barrier to macromolecular crystal structure determination is discussed. 相似文献
12.
Delagenière S Brenchereau P Launer L Ashton AW Leal R Veyrier S Gabadinho J Gordon EJ Jones SD Levik KE McSweeney SM Monaco S Nanao M Spruce D Svensson O Walsh MA Leonard GA 《Bioinformatics (Oxford, England)》2011,27(22):3186-3192
MOTIVATION: Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. RESULTS: ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements. 相似文献
13.
Ligation-mediated PCR for quantitative in vivo footprinting 总被引:5,自引:0,他引:5
14.
Experimental phasing of macromolecular crystal structures relies on the accurate measurement of two or more sets of reflections from isomorphous crystals, where the scattering power of a few atoms is different for each set. Recently, it was demonstrated that X-ray-induced intensity differences can also contain phasing information, exploiting specific structural changes characteristic of X-ray damage. This method (radiation damage-induced phasing; RIP) has the advantage that it can be performed on a single crystal of the native macromolecule. However, a drawback is that X-rays introduce many small changes to both solvent and macromolecule. In this study, ultraviolet (UV) radiation has been used to induce specific changes in the macromolecule alone, leading to a larger contrast between radiation-susceptible and nonsusceptible sites. Unlike X-ray RIP, UV RIP does not require the use of a synchrotron. The method has been demonstrated for a series of macromolecules. 相似文献
15.
16.
J V Abraham-Peskir 《Cellular and molecular biology, including cyto-enzymology》2000,46(6):1045-1052
X-ray microscopy using synchrotron radiation is a novel and promising approach to the ultrastructural investigation of the cell. In terms of resolution it lies between light and transmission electron microscopy, having a practical resolving power of 30-50 nm. Specimen preparation is minimal, a thickness of up to 10 microm can easily be accommodated and there is no need to fix, stain, dry or put the sample into vacuum. High contrast projection images of fully-hydrated whole cells in physiological medium can be obtained. The application and significance of the soft X-ray microscope to cellular biology will be discussed along with recent methodologies developed to optimise imaging, such as, cryo-preservation, immuno-labelling and elemental mapping. 相似文献
17.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources. 相似文献
18.
PurposeWe performed the first investigations, via measurements and Monte Carlo simulations on phantoms, of the feasibility of a new technique for synchrotron radiation rotational radiotherapy for breast cancer (SR3T).MethodsA Monte Carlo (MC) code based on Geant4 toolkit was developed in order to simulate the irradiation with the SR3T technique and to evaluate the skin sparing effect in terms of centre-to-periphery dose ratio at different energies in the range 60–175 keV. Preliminary measurements were performed at the Australian Synchrotron facility. Radial dose profiles in a 14-cm diameter polyethylene phantom were measured with a 100-mm pencil ionization chamber for different beam sizes and compared with the results of MC simulations. Finally, the dose painting feasibility was demonstrated with measurements with EBT3 radiochromic films in a phantom and collimating the SR beam at 1.5 cm in the horizontal direction.ResultsMC simulations showed that the SR3T technique assures a tumour-to-skin absorbed dose ratio from about 7:1 (at 60 keV photon energy) to about 10:1 (at 175 keV), sufficient for skin sparing during radiotherapy. The comparison between the results of MC simulations and measurements showed an agreement within 5%. Two off-centre foci were irradiated shifting the rotation centre in the horizontal direction.ConclusionsThe SR3T technique permits to obtain different dose distributions in the target with multiple rotations and can be guided via synchrotron radiation breast computed tomography imaging, in propagation based phase-contrast conditions. Use of contrast agents like iodinated solutions or gold nanoparticles for dose enhancement (DE-SR3T) is foreseen and will be investigated in future work. 相似文献
19.
Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. 总被引:8,自引:0,他引:8 下载免费PDF全文
J Hajdu K R Acharya D I Stuart P J McLaughlin D Barford N G Oikonomakos H Klein L N Johnson 《The EMBO journal》1987,6(2):539-546
Direct observation of the progress of a catalysed reaction in crystals of glycogen phosphorylase b has been made possible through fast crystallographic data collection achieved at the Synchrotron Radiation source at Daresbury, UK. In the best experiments, data to 2.7 A resolution (some 108,300 measurements; 21,200 unique reflections) were measured in 25 min. In a series of time-resolved studies in which the control properties of the enzyme were exploited in order to slow down the reaction, the conversion of heptenitol to heptulose-2-phosphate, the phosphorylysis of maltoheptaose to yield glucose-1-phosphate and the oligosaccharide synthesis reaction involving maltotriose and glucose-1-phosphate have been monitored in the crystal. Changes in electron density in the difference Fourier maps are observed as the reaction proceeds not only at the catalytic site but also the allosteric and glycogen storage sites. Phosphorylase b is present in the crystals in the T state and under these conditions exhibits low affinity for both phosphate and oligosaccharide substrates. There are pronounced conformational changes associated with the formation and binding of the high-affinity dead-end product, heptulose-2-phosphate, which show that movement of an arginine residue, Arg 569, is critical for formation of the substrate-phosphate recognition site. The results are discussed with reference to proposals for the enzymic mechanism of phosphorylase. The feasibility for time-resolved studies on other systems and recent advances in this area utilizing Laue diffraction are also discussed. 相似文献
20.
Garman E 《Current opinion in structural biology》2003,13(5):545-551
Macromolecular crystals commonly suffer rapid radiation damage during room temperature X-ray data collection. Therefore, data are now routinely collected with the sample held at around 100K, significantly reducing secondary radiation damage, and usually resulting in higher resolution and better quality data. At synchrotron sources, the frequent observation of radiation damage even at cryotemperatures has prompted the development of exciting new experiments aimed at characterising and reducing this damage, and using it for structure determination and enzymatic studies. Current research into cryotechniques seeks to understand the basic physical and chemical processes involved in flash-cooling and radiation damage, which should eventually enable the rational optimisation of cryoprotocols. 相似文献