首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Semen quality, mare status and mare management during estrus will have the greatest impact on pregnancy rates when breeding mares with frozen semen. If semen quality is not optimal, mare selection and reproductive management are crucial in determining the outcome. In addition to mare selection, client communication is a key factor in a frozen semen program. Old maiden mares and problem mares should be monitored for normal cyclicity and all, except young maidens, should have at least a uterine culture and cytology performed. Mares with positive bacterial cultures and cytologies should be treated at least three consecutive days when in estrus with the proper antibiotic. With frozen semen, timing the ovulation is highly desirable in order to reduce the interval between breeding and ovulation. The use of ovulation inducing agents such as human chorionic gonadotropin (hCG) or the GnRH analogue, deslorelin, are critical components to accurately time the insemination with frozen semen. Most hCG treated mares ovulate 48h post-treatment (12-72h) while most deslorelin (Ovuplant) treated mares ovulate 36-42h post-treatment. However, mares bred more than once during the breeding cycle appear to have a slight but consistent increase in pregnancy rate compared to mares bred only once pre- or post-ovulation. In addition, the "capacitation-like" changes inflicted on the sperm during the process of freezing and thawing appear to be responsible for the shorter longevity of cryopreserved sperm. Therefore, breeding closer to ovulation should increase the fertility for most stallions with frozen semen. Recent evidence would suggest that breeding close to the uterotubal junction increases the sperm numbers in the oviduct increasing the chances of pregnancy. Post-breeding examinations aid in determining ovulation and uterine fluid accumulations so that post-breeding therapies can be instituted if needed. Average pregnancy rates per cycle of mares bred with frozen semen are between 30 and 40% with a wide range between sires. Stallion and mare status are major factors in determining the success of frozen semen inseminations. Pregnancy rates are lower for barren and old maiden mares as well as those mares treated for uterine infections during the same cycle of the insemination. To maximize fertility with frozen semen, a careful selection of the stallions and mares, with proper client communication is critical. Dedication and commitment of mare owner and inseminator will have the most significant impact on the pregnancy rates.  相似文献   

2.
Pregnancy rates with cooled equine semen can be unsatisfactory and show great variation. Information about first cycle pregnancy rates and pregnancy rates per cycle are often lacking from publicly available records. This retrospective cohort study was performed to evaluate the fertility of the Norwegian Coldblooded trotter. The aim of the study was to compare the breeding results after insemination with fresh, extended with those of cooled, shipped semen among Norwegian Coldblooded trotter mares. First cycle pregnancy rate was the main parameter used to measure fertility. Stud-books were collected from four studs from the years 2006–2010. Statistical analyses were done in Stata using Chi square test and multivariable analyses where different models were compared based on Akaike’s information criterion. First cycle pregnancy rate, seasonal pregnancy rate and foaling rate all showed significant differences (P < 0.0001) when comparing mares inseminated at stud with mares inseminated with cooled, shipped semen, favoring artificial insemination (AI) at stud. First cycle pregnancy rate was 55.1 % for mares inseminated at stud with fresh extended semen and 42.2 % for mares inseminated with cooled shipped semen. The overall pregnancy rate per cycle was 84.4 % for AI at stud and 66.9 % for cooled, shipped semen. The parameters stud, mare age, number of inseminations within an estrus cycle and individual stallion were also investigated for influence on fertility. Few retrospective studies include the parameter of first cycle pregnancy rates. Our study does not differ dramatically when comparing seasonal pregnancy rates and foaling rates with similar studies. Fertility parameters for the Norwegian Coldblooded trotter do not differ significantly from most other studies of Coldblooded mares and other mare breeds around the world. But the difference in fertility parameters between AI at stud to AI with cooled semen between our study and others, indicates that higher pregnancy rates in Norwegian Coldblooded trotter may be possible.  相似文献   

3.
4.
A breeding trial was conducted to evaluate the effect of insemination timing on the fertility of mares bred with frozen/thawed equine semen. One stallion and 60 reproductively sound, estrous-synchronized mares were included in the study. Mares were assigned to one of three groups (n = 20): 1) insemination with fresh semen every other day during estrus from detection of a 35-mm follicle until ovulation, 2) insemination with frozen/thawed semen every day during estrus from detection of a 35-mm follicle until ovulation or 3) insemination with frozen/thawed semen once, within 6 h after ovulation. Single-cycle 18-d pregnancy rates resulting from insemination with fresh semen (70%), preovulation insemination with frozen/thawed semen (60%) and postovulation insemination with frozen/thawed semen (55%) were not different (P > 0.05). Possibly, equivalent pregnancy rates could be achieved with frozen/thawed semen using either daily inseminations until ovulation occurs or frequent ovarian palpations with a single post-ovulation insemination. Further studies regarding the effect of insemination timing on stallion fertility are needed since the present investigation included only one stallion and a small number of mares.  相似文献   

5.
It is probable that reduced pregnancy rates in mares bred to subfertile stallions is attributable, in part, to the reduced number of normal spermatozoa that colonize the oviduct. Administration of oxytocin stimulates both uterine and oviductal contractility. The hypothesis that oxytocin may enhance sperm transport to/into the oviducts, and thereby increase pregnancy rates, was tested in 2 trials. For both trials, fertile estrous mares with follicles > or = 35 mm in diameter were inseminated once at 24 h after administration of 1500 to 2000 U hCG. The inseminate dose was limited to 100 million spermatozoa in order to lower pregnancy rates and thus increase the chance of detecting a treatment effect. Pregnancy status was determined by transrectal ultrasound examination 14 to 16 d after insemination. In Trial 1, 49 mares were inseminated with 4 mL extended semen from 1 of 3 stallions (1 fertile and 2 subfertile males). Immediately after insemination, the mares were administered either 20 U oxytocin or 1 mL saline intravenously. In Trial 2, 51 mares were inseminated with 4 mL extended semen from 1 of 4 stallions (1 fertile and 1 subfertile male used in Trial 1, and 2 additional fertile males). Immediately after insemination, and again 30 min later, mares were administered either 5 U oxytocin or 0.25 mL saline intramuscularly. To test for effects of treatment with oxytocin and for the interaction between semen quality and treatment, a generalized linear mixed regression model was used that accounted for the split-plot design (treatment within stallions), the random effect of stallion, the fixed effect of semen quality, the binary outcome of a single breeding trial, and the varying number of trials per stallion/treatment groups. Three treatment protocols or regimens were used: placebo, 5 U oxytocin injected twice intramuscularly, and 20 units oxytocin injected twice intravenously. Semen was classified as high (fertile stallions) or low (subfertile stallions) quality. No interaction between semen quality and treatment was detected (P > 0.10). The pregnancy rate of mares treated with oxytocin immediately after insemination was 30% (15/50) compared with 50% (25/50) for mares treated with saline immediately after breeding. Administration of oxytocin did not affect pregnancy rates (P > 0.10).  相似文献   

6.
Mares are generally inseminated with 500 million progressively motile fresh sperm and approximately 1 billion total sperms that have been cooled or frozen. Development of techniques for low dose insemination would allow one to increase the number of mares that could be bred, utilize stallions with poor semen quality, extend the use of frozen semen, breed mares with sexed semen and perhaps reduce the incidence of post-breeding endometritis. Three low dose insemination techniques that have been reported include: surgical oviductal insemination, deep uterine insemination and hysteroscopic insemination.Insemination techniques: McCue et al. [J. Reprod. Fert. 56 (Suppl.) (2000) 499] reported a 21% pregnancy rate for mares inseminated with 50,000 sperms into the fimbria of the oviduct.Two methods have been reported for deep uterine insemination. In the study of Buchanan et al. [Theriogenology 53 (2000) 1333], a flexible catheter was inserted into the uterine horn ipsilateral to the corpus luteum. The position of the catheter was verified by ultrasound. Insemination of 25 million or 5 million spermatozoa resulted in pregnancy rates of 53 and 35%, respectively. Rigby et al. [Proceedings of 3rd International Symposium on Stallion Reproduction (2001) 49] reported a pregnancy rate of 50% with deep uterine insemination. In their experiment, the flexible catheter was guided into position by rectal manipulation.More studies have reported the results of using hysteroscopic insemination. With this technique, a low number of spermatozoa are placed into or on the uterotubal junction. Manning et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 84] reported a 22% pregnancy rate when 1 million spermatozoa were inserted into the oviduct via the uterotubal junction. Vazquez et al. [Proc. Ann. Mtg. Soc. Theriogenol. (1998) 82] reported a 33% pregnancy rate when 3.8 million spermatozoa were placed on the uterotubal junction. Recently, Morris et al. [J. Reprod. Fert. 188 (2000) 95] utilized the hysteroscopic insemination technique to deposit various numbers of spermatozoa on the uterotubal junction. They reported pregnancy rates of 29, 64, 75 and 60% when 0.5, 1, 5 and 10 million spermatozoa, respectively, were placed on the uterotubal junction.Insemination of sex-sorted spermatozoa: One of the major reasons for low dose insemination is insemination of X- or Y-chromosome-bearing sperm. Through the use of flow cytometry, spermatozoa can be accurately separated into X- or Y-bearing chromosomes. Unfortunately, only 15 million sperms can be sorted per hour. At that rate, it would take several days to sort an insemination dose containing 800 million to 1 billion spermatozoa. Thus, low dose insemination is essential for utilization of sexed sperm. Lindsey [Hysteroscopic insemination with low numbers of fresh and cryopreserved flow-sorted stallion spermatozoa, M.S. Thesis, Colorado State University, Fort Collins, CO, USA, 2000] utilized either deep uterine insemination or hysteroscopic insemination to compare pregnancy rates of mares inseminated with sorted, fresh stallion sperm to those inseminated with non-sorted, fresh stallion sperm. Hysteroscopic insemination resulted in more pregnancies than ultrasound-guided deep uterine insemination. Pregnancy rate was similar for mares bred with either non-sorted or sex-sorted spermatozoa.In a subsequent study, Lindsey et al. [Proceedings of 5th International Symposium on Equine Embryo Transfer (2000) 13] determined if insemination of flow-sorted spermatozoa adversely affected pregnancy rates and whether freezing sex-sorted spermatozoa would result in pregnancies. Mares were assigned to one of four groups: group 1 was inseminated with 5 million non-sorted sperms using hysteroscopic insemination; group 2 was inseminated with 5 million sex-sorted sperms using hysteroscopic insemination; group 3 was inseminated with non-sorted, frozen-thawed sperm; and group 4 was inseminated with sex-sorted frozen sperm. Pregnancy rates were similar for mares inseminated with non-sorted fresh sperm, sex-sorted fresh sperm and non-sorted frozen sperm (40, 37.5 and 37.5%, respectively). Pregnancy rates were reduced dramatically for those inseminated with sex-sorted, frozen-thawed sperm (2 out of 15, 13%). These studies demonstrated that hysteroscopic insemination is a practical and useful technique for obtaining pregnancies with low numbers of fresh spermatozoa or low numbers of frozen-thawed spermatozoa. Further studies are needed to determine if this technique can be used to obtain pregnancies from stallions with poor semen quality. In addition, further studies are needed to develop techniques of freezing sex-sorted spermatozoa.  相似文献   

7.
Two trials were conducted to investigate the effects of intrauterine infusion of PGE2 and uterine horn insemination on pregnancy rates in mares achieved by breeding with a suboptimal number of normal spermatozoa. Estrus was synchronized and mares were teased daily with a stallion to detect estrus. Mares in estrus were examined by transrectal palpation and ultrasonography to monitor follicular status. On the first day a 35-mm diameter follicle was present, hCG (1500 IU, iv) was administered and the mares were bred the next day. Mares (Trial 1, n = 34; Trial 2, n = 28) were inseminated with 25 million total spermatozoa from either a stallion with good semen quality (Trial 1) or poor semen quality (Trial 2). In each trial, mares were assigned to 1 of 4 treatment groups as follows: Group PGE-HI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; Group PGE-BI - infusion of 0.25 mg PGE2 into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body; Group SAL-HI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the proximal end of the same uterine horn; or Group SAL-BI - infusion of 1 mL sterile saline into the proximal end of the uterine horn ipsilateral to the dominant follicle 2 h prior to insemination in the uterine body. After breeding, mares were examined daily by transrectal ultrasonography to confirm ovulation, and were re-examined 14 to 16 d after ovulation for pregnancy status. Data were analyzed by Chi-square. Overall pregnancy rates were 59% for stallion 1 and 29% for stallion 2. Group pregnancy rates did not differ for mares bred by either stallion (P > 0.10). Pregnancy rates were not altered by horn insemination for either stallion (P > 0.10). Intrauterine infusion of PGE2 improved pregnancy rate in mares bred by the stallion with good quality semen (P < 0.05), but did not alter pregnancy rate in mares bred by the stallion with poor quality semen (P > 0.10). Further research is warranted to determine if intrauterine infusion of PGE2 will enhance spermatozoal colonization of the oviduct and pregnancy rates in mares, and if PGE-treatment will improve pregnancy rates achieved by subfertile stallions.  相似文献   

8.
The freezability of stallion semen defined as the number of selected ejaculates/total number of ejaculates frozen from 161 different stallions was analyzed. Of the stallions, 19, 30, 27 and 24% had a freezability of 0%, 0 to 33%, 33 to 66%, over 66%, respectively In 85 different stallions, the correlation of freezability between first and second year was 0.60 (P < 0.001). The relationship between fertility with fresh and frozen semen and freezability was analyzed in 40 stallions whose freezability and fertility information was recorded during 5 years. There was a strong relationship between fertility of fresh semen and semen freezability (P < 0.001). However, the relationship between fertility of frozen semen and freezability was not as marked (P < 0.05). Analysis of the field fertility per cycle results when mares were bred with 300 or 150 x 10(6) total spermatozoa at different frequencies until ovulation indicated that mares that were inseminated 2 times or more per estrus show an improved fertility in comparison with mares inseminated only once (34%, n = 1576 vs 26%, n = 626; P < 0.001). Foaling rate when mares were inseminated with frozen semen (1858 mares during 8 breeding seasons) was mainly influenced by mare age (< 16 years: 54% vs >/= 16 years 42% p < 0.001). Date of first insemination (before May 15: 58% vs after May 15: 37%) also had a significant effect on foaling rate (P < 0.001).  相似文献   

9.
10.
This study investigated the effects of different artificial insemination (AI) regimes on the pregnancy rate in mares inseminated with either cooled or frozen-thawed semen. In essence, the influence of three different factors on fertility was examined; namely the number of inseminations per oestrus, the time interval between inseminations within an oestrus, and the proximity of insemination to ovulation. In the first experiment, 401 warmblood mares were inseminated one to three times in an oestrus with either cooled (500 x 10(6) progressively motile spermatozoa, stored at +5 degrees C for 2-4 h) or frozen-thawed (800 x 10(6) spermatozoa, of which > or =35% were progressively motile post-thaw) semen from fertile Hanoverian stallions, beginning -24, -12, 0, 12, 24 or 36 h after human chorionic gonadotrophin (hCG) administration. Mares were injected intravenously with 1500 IU hCG when they were in oestrus and had a pre-ovulatory follicle > or =40mm in diameter. Experiment 2 was a retrospective analysis of the breeding records of 2,637 mares inseminated in a total of 5,305 oestrous cycles during the 1999 breeding season. In Experiment 1, follicle development was monitored by transrectal ultrasonographic examination of the ovaries every 12 h until ovulation, and pregnancy detection was performed sonographically 16-18 days after ovulation. In Experiment 2, insemination data were analysed with respect to the number of live foals registered the following year. In Experiment 1, ovulation occurred within 48 h of hCG administration in 97.5% (391/401) of mares and the interval between hCG treatment and ovulation was significantly shorter in the second half of the breeding season (May-July) than in the first (March-April, P< or =0.05). Mares inseminated with cooled stallion semen once during an oestrus had pregnancy rates comparable to those attained in mares inseminated on two (48/85, 56.5%) or three (20/28, 71.4%) occasions at 24 h intervals, as long as insemination was performed between 24 h before and 12 h after ovulation (78/140, 55.7%). Similarly, a single frozen-thawed semen insemination between 12 h before (31/75, 41.3%) and 12 h after (24/48, 50%) ovulation produced similar pregnancy rates to those attained when mares were inseminated either two (31/62, 50%) or three (3/9, 33.3%) times at 24 h intervals.In the retrospective study (Experiment 2), mares inseminated with cooled semen only once per cycle had significantly lower per cycle foaling rates (507/1622, 31.2%) than mares inseminated two (791/1905, 41.5%), three (464/1064, 43.6%) or > or =4 times (314/714, 43.9%) in an oestrus (P< or =0.001). In addition, there was a tendency for per cycle foaling rates to increase when mares were inseminated daily (619/1374, 45.5%) rather than every other day (836/2004, 42.1%, P = 0.054) until ovulation.It is concluded that under conditions of frequent veterinary examination, a single insemination per cycle produces pregnancy rates as good as multiple insemination, as long as it is performed between 24 h before and 12 h after AI for cooled semen, or 12 h before and 12 h after AI for frozen-thawed semen. If frequent scanning is not possible, fertility appears to be optimised by repeating AI on a daily basis.  相似文献   

11.
It has recently been reported that large insemination volumes might affect fertility of mares. The results from these studies are confounded by other factors, however, such as inadequate number of spermatozoa in the inseminate. We conducted a study to test whether volume alone affects fertility when sufficient numbers of spermatozoa are present. Semen from one stallion was collected, extended at 50 x 10(6) spermatozoa/ml, and stored in a commercial semen cooling device for 18 to 30 h before insemination. Ten pony mares were assigned during estrus in random pairs to be bred every other day with either 30 or 120 ml of extended cooled semen. Pregnancy was diagnosed by ultrasonography per rectum on Days 11, 12 and 13 after ovulation. On Day 13, the mares were given a luteolytic dose (5 mg) of PGF(2alpha). On the subsequent cycle, the mares were given the alternate treatment. The pregnancy rates in the 30- and 120-ml insemination volume groups were 7 9 and 10 10 , respectively; this difference was not significant (P=0.2). Embryonic growth from Day 11 to Day 13 was not different (P>0.05) between groups. We conclude that insemination volumes as large as 120 ml have no adverse effect on fertility.  相似文献   

12.
The fertility of frozen-thawed and fresh semen from each of three stallions was compared in an experiment with a randomized block design using 128 mares. Semen was collected every third day, extended in lactose-EDTA-egg yolk extender at a concentration of 500 × 106 progressively motile sperm per 1.0 ml, and frozen in individual-dose, 1.0-ml straws (1.9 mm × 267 mm). The same stallions were collected daily for inseminations with fresh semen. For each insemination dose with fresh semen, 300 × 106 progressively motile sperm were added to 10 ml of heated skim milk extender. Mares were inseminated daily from the second day of estrus through the end of estrus. Of 52 ejaculates processed and frozen, 38% were discarded because < 35% of the sperm were progressively motile after thawing. Based on rectal palpations on day 50 post-ovulation, pregnancy rates for inseminations during one estrus to semen from the three stallions were 17, 33 and 35% for frozen-thawed semen and 60, 62 and 64% for fresh semen. Pregnancy rates with frozen semen from two of the three stallions were 54% of the rates attained with fresh semen.  相似文献   

13.
In this study, we tested the hypothesis that insemination of mares with twice the recommended dose of cooled semen (2 x 10(9) spermatozoa) would result in higher pregnancy rates than insemination with a single dose (1 x 10(9) spermatozoa) or with 1 x 10(9) spermatozoa on each of 2 consecutive days. A total of 83 cycles from 61 mares was used. Mares were randomly assigned to 1 of 3 treatment groups when a 40-mm follicle was detected by palpation and ultrasonography. Mares in Group 1 were inseminated with 1 x 10(9) progressively motile spermatozoa that had been cooled in a passive cooling unit to 5 degrees C and stored for 24 h. A second aliquot of semen from the same collection was stored for an additional 24 h and inseminated at 48 h after collection. Mares in Group 2 were inseminated once with 1 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. Group 3 mares were inseminated once with 2 x 10(9) progressively motile spermatozoa that had been cooled to 5 degrees C and stored for 24 h. All mares were given 2500 IU i.v. hCG at the first insemination. Pregnancy was determined by ultrasonography 12, 14 and 16 d after ovulation. On Day 16, mares were administered i.m. 10 mg of PGF2 alpha and, upon returning to estrus, were randomly reassigned to a group for repeated treatment. Semen was collected from one of 3 stallions every 3 d; mares with a 40-mm ovarian follicle were inseminated with semen from the stallion collected on the preceding day. Semen was allocated into doses containing 1 x 10(9) progressively motile spermatozoa, diluted with dried skim milk-glucose extender to a concentration of 25 x 10(6) motile spermatozoa/ml (total volume 40 ml), placed in a passive cooling unit and cooled to 5 degrees C for 24 or 48 h. Response was measured by number of mares showing pregnancy. Data were analyzed by Chi square. Mares inseminated twice with 1 x 10(9) progressively motile spermatozoa on each of two consecutive days had a higher pregnancy rate (16/25, 64%; P < 0.05) than mares inseminated once with 1 x 10(9) progressively motile spermatozoa (9/29, 31%) or those inseminated once with 2 x 10(9) progressively motile spermatozoa (12/29, 41%). Pregnancy rates did not differ significantly (P > 0.10) among stallions (69, 34 and 32%). Interval from last insemination to ovulation was 0.9, 2.0 and 2.0 d for mares in Groups 1, 2 and 3, respectively. Based on these results, the optimal insemination regimen is a dose of 1 x 10(9) progressively motile spermatozoa given on two consecutive days. However, a shorter interval (< or = 24 h rather than > 0.9 d) between insemination and ovulation may affect pregnancy rates, and needs to be investigated.  相似文献   

14.
The sperm-rich fraction of stallion semen was collected in an AV and, after dilution in an extender, was cooled to 2--5 degrees C before placing in aluminium tubes for freezing in liquid nitrogen for several hours or months. The spermatozoa in about 200 ejaculates from 36 stallions were examined to compare their survival time, motility and velocity before and after thawing. According to the various indices used, 20% of stallions produced spermatozoa which were unaffected, 60% partly but not seriously affected and the remainder completely inactivated. The velocity of spermatozoa decreased from 51.4 micrometers/sec in the fresh semen to 36.8 micrometers/sec in the thawed semen. The fertilizing capacity of the spermatozoa of frozen--thawed semen of 5 stallions was examined in 14 mares. In all, 65 inseminations were made and the blastocysts were recovered non-surgically from the uterus 7--9 days after ovulation. A 20% drop in blastocyst recovery occurred as the result of freezing and thawing, when the same mares were used for insemination of raw and frozen--thawed semen. The capacity to freeze sucessfully proved to be a specific characteristic of certain stallions. Degenerate blastocysts were not recovered but those resulting from artificial insemination of frozen semen were much smaller in diameter than those following insemination of raw semen.  相似文献   

15.
Stallion semen processing is far from standardized and differs substantially between AI centers. Suboptimal pregnancy rates in equine AI may primarily result from breeding with low quality semen not adequately processed for shipment. It was the aim of the study to evaluate quality and fertility of cooled-shipped equine semen provided for breeding of client mares by commercial semen collection centers in Europe. Cooled shipped semen (n = 201 doses) from 67 stallions and 36 different EU-approved semen collection centers was evaluated. At arrival, semen temperature was 9.8 ± 0.2 °C, mean sperm concentration of AI doses was 68 ± 3 x 106/ml), mean total sperm count was 1.0 ± 0.1 x 109, total motility averaged 83 ± 1% and morphological defects 45 ± 2%. A total of 86 mares were inseminated, overall per season-pregnancy rate in these mares was 67%. Sperm concentration significantly influenced semen motility and morphology at arrival of the shipped semen. Significant effects of month of the year on volume, sperm concentration and total sperm count of the insemination dose were found. The collection center significantly influenced all semen parameters evaluated. Semen doses used to inseminate mares that became pregnant had significantly higher total and progressive motility of spermatozoa and a significantly lower percentage of morphological semen defects than insemination doses used for mares failing to get pregnant. Results demonstrate that insemination with semen of better quality provides a higher chance to achieve pregnancy. Besides the use of stallions with good semen quality, appropriate semen processing is an important factor for satisfying results in artificial insemination with cooled-shipped horse semen.  相似文献   

16.
A successful outcome after artificial insemination with cooled semen is dependent on many factors, the sperm quality of the ejaculate being one. Previous studies have shown that spermatozoa with good motility, normal morphology, and good chromatin integrity can be selected by means of colloid centrifugation, particularly single layer centrifugation (SLC) using species-specific colloids. The purpose of the present study was to conduct an insemination trial with spermatozoa from “normal” ejaculates, i.e., from stallions with no known fertility problem, to determine whether the improvements in sperm quality seen in SLC-selected sperm samples compared with uncentrifuged controls in laboratory tests are reflected in an increased pregnancy rate after artificial insemination. In a multicentre study, SLC-selected sperm samples and uncentrifuged controls from eight stallions were inseminated into approximately 10 mares per treatment per stallion. Ultrasound examination was carried out approximately 16 days after insemination to detect an embryonic vesicle. The pregnancy rates per cycle were 45% for controls and 69% for SLC-selected sperm samples, which is statistically significant (P < 0.0018). Thus, the improvement in sperm quality reported previously for SLC-selected sperm samples is associated with an increase in pregnancy rate, even for ejaculates from stallions with no known fertility problem.  相似文献   

17.
Semen from 3 stallions was extended using 2 methods (Kenney extender and a modified Kenney extender), slowly cooled, and stored for 41 ± 6 (s.d.) h before insemination. An insemination dose (40 ml) contained 1.5-2 billion spermatozoa. In the experiment, 26 mares were inseminated in 30 cycles. The pregnancy rate per cycle obtained with sperm stored in the Kenney extender was 87% (n=15). When the semen was extended with the modified extender, centrifuged and stored, the pregnancy rate was 60% (n=15). Inseminations were done every other day until ovulation was detected. If a mare ovulated more than 24 h after the last insemination, she was inseminated also after ovulation. The single-cycle pregnancy rate was 58% when the mares were inseminated only before ovulation (n=19) but the rate was 100% when the inseminations were done both before and after ovulation (n=9) or only after ovulation (n=2). The difference in pregnancy rates was significant (p<0.05), indicating that postovula-tory inseminations probably serve to ensure the pregnancies. The extending and handling methods used in this study resulted in a combined pregnancy rate of 73%, and appear thus to be useful for storing stallion semen for approximately 2 days.  相似文献   

18.
Sieme H  Bonk A  Hamann H  Klug E  Katila T 《Theriogenology》2004,62(5):915-928
The effects of different artificial insemination (AI) techniques and sperm doses on pregnancy rates of normal Hanoverian breed mares and mares with a history of barrenness or pregnancy failure using fresh or frozen-thawed sperm were investigated. The material included 187 normal mares (148 foaling and 39 young maiden mares) and 85 problem mares with abnormal reproductive history. Mares were randomly allotted into groups with respect to AI technique (routine AI into the uterine body, transrectally controlled deep intracornual AI ipsilateral to the preovulatory follicle, or hysteroscopic AI onto the uterotubal junction ipsilateral to the preovulatory follicle), storage method of semen (fresh, frozen-thawed), AI volume (0.5, 2, 12 ml), and sperm dose (50 x 10(6) or 300 x 10(6) progressively motile sperm (pms) for fresh semen and 100 or 800 x 10(6) frozen-thawed sperm with >35% post-thaw motility). The mares were inseminated once per cycle, 24 h after hCG administration when fresh semen was used, or 30 h for frozen-thawed semen. Differences in pregnancy rates between treatment groups were analyzed by Chi-squared test, and for most relevant factors (insemination technique, mare, semen, and stallion) expectation values and confidence intervals were calculated using multivariate logistic models. Neither insemination technique, volume, sperm dose, nor mare or stallion had significant effects (P > 0.05) on fertility. Type of semen, breeding mares during foal heat, and an interaction between insemination technique, semen parameters, and mares did have significant effects (P < 0.05). In problem mares, frozen semen AI yielded significantly lower pregnancy rates than fresh semen AI (16/43, 37.2% versus 25/42, 59.5%), but this was not the case in normal mares. In normal mares, hysteroscopic AI with fresh semen gave significantly (P < 0.05) better pregnancy rates than uterine body AI (27/38, 71% versus 18/38, 47.3%), whereas in problem mares this resulted in significantly lower pregnancy rates than uterine body AI (5/15, 33.3% versus 16/19, 84.2%). Our results demonstrate that for problem mares, conventional insemination into the uterine body appears to be superior to hysteroscopic insemination and in normal mares, the highest pregnancy rates can be expected by hysteroscopic insemination.  相似文献   

19.
Different insemination doses have been used for artificial insemination(AI) in horses. Since the insemination dose can affect the pregnancy rate, it is important to ensure that an adequate dose be used regardless of the type of inseminationprotocol used. The aim of this study was to find out if it is possible to decrease the insemination dose from 500 x 10(6) progressively motile spermatozoa to 300 x 10(6) progressively motile spermatozoa and still maintain an acceptable pregnancy rate when using extended fresh semen. Thirteen stallions of known fertility and a well-defined group of 64 mares were used in the study. The mares were randomly assigned to 1 of 2 insemination groups. Examination for pregnancy was performed by ultrasonography per rectum approximately 16 d after the last insemination. When using an insemination dose of 300 x 10(6) progressively motile spermatozoa the pregnancy rate per cycle was 75%. With an insemination dose of 500 x 10(6) progressively motile spermatozoa the pregnancy rate per cycle was 64%. There was no significant difference in the pregnancy rate between the 2 insemination doses (P = 0.341). We conclude that when using fresh extended semen it is unlikely that an insemination dose of 300 x 10(6) progressively motile spermatozoa would yield a lower pregnancy rate than a dose of 500 x 10(6) progressively motile spermatozoa if stallions with good quality semen are selected.  相似文献   

20.
In the horse industry, milk or milk-based extenders are used routinely for dilution and storage of semen cooled to 4-8 degrees C. Although artificial insemination (AI) with chilled and transported semen has been in use for several years, pregnancy rates are still low and variable related to variable semen quality of stallions. Over the years, a variety of extenders have been proposed for cooling, storage and transport of stallion semen. Fractionation of milk by microfiltration, ultrafiltration, diafiltration and freeze-drying techniques has allowed preparation of purified milk fractions in order to test them on stallion sperm survival. Finally, a high protective fraction, native phosphocaseinate (NPPC), was identified. A new extender, INRA96, based on modified Hanks' salts, supplemented with NPPC was then developed for use with cooled/stored semen.Four experiments were conducted to compare INRA96 and milk-based extenders under various conditions of storage. The diluted semen was maintained under aerobic conditions when stored at 15 degrees C, and anaerobic conditions when stored at 4 degrees C. In experiment 1, split ejaculates from 13 stallions were diluted either in INRA96 extender then stored at 15 degrees C or diluted in Kenney or INRA82 extenders and then stored at 4 degrees C for 24h, until insemination. In experiment 2, semen from two stallions was extended in INRA96 then inseminated immediately or stored at 15 degrees C for 3 days until insemination. In experiment 3, semen from three stallions was diluted in INRA96 then stored at 15 or 4 degrees C for 24h until insemination, finally, in experiment 4, split ejaculates from four stallions were diluted in INRA96 or E-Z Mixin extenders then stored at 4 degrees C for 24h until insemination. Experiment 1 demonstrated that at 15 degrees C, INRA96 extender significantly improved pregnancy rate per cycle compared to Kenney or INRA82 extenders at 4 degrees C after 24h of storage (57%, n=178 versus 40%, n=171, respectively; P<0.01). Experiment 2 showed that semen stored at 15 degrees C for 3 days can achieve pregnancy at a fertility rate per cycle of 48% (n=52) compared to 68% (n=50, immediate insemination, P=0.06). Experiment 3 demonstrated that INRA96 extender can be as efficient at 15 degrees C (54%, n=37) as at 4 degrees C (54%, n=35) after 24h of storage. Finally, experiment 4 showed that INRA96 extender used at 4 degrees C (59%, n=39) seems to improve fertility per cycle compared to E-Z Mixin at 4 degrees C (49%, n=39, P=0.25), but this result has to be confirmed.These results demonstrate that semen diluted in INRA96 extender and stored at 15 degrees C can be an alternative to semen diluted in milk-based extenders and stored at 4 degrees C for "poor cooler" stallions. Furthermore, INRA96 extender can be as efficient at 15 degrees C as at 4 degrees C, for preserving sperm motility and fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号