首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
This study deals with biochemical and metabolic-physiological aspects of the relationship between variation in in vivo alcohol dehydrogenase activity and fitness in larvae homozygous for the alleles Adh71k, AdhF, AdhS, of Drosophila melanogaster, and for the common Adh allele of Drosophila simulans. The Adh genotypes differ in the maximum oxidation rates of propan-2-ol into acetone in vivo. There are smaller differences between the Adh genotypes in rates of ethanol elimination. Rates of accumulation of ethanol in vivo are negatively associated with larval-to-adult survival of the Adh genotypes. The rank order of the maximum rates of the ADHs in elimination of propan-2-ol, as well as ethanol, is ADH-71k greater than ADH-F greater than ADH-S greater than simulans-ADH. The ratio of this maximum rate to ADH quantity reveals the rank order of ADH-S greater than ADH-F greater than ADH-71k greater than simulans-ADH, suggesting a compensation for allozymic efficiency by the ADH quantity in D. melanogaster.Our findings show that natural selection may act on the Adh polymorphism in larvae via differences in rates of alcohol metabolism.  相似文献   

2.
Matzkin LM 《Molecular ecology》2005,14(7):2223-2231
Drosophila mojavensis and Drosophila arizonae are species of cactophilic flies that share a recent duplication of the alcohol dehydrogenase (Adh) locus. One paralog (Adh-2) is expressed in adult tissues and the other (Adh-1) in larvae and ovaries. Enzyme activity measurements of the ADH-2 amino acid polymorphism in D. mojavensis suggest that the Fast allozyme allele has a higher activity on 2-propanol than 1-propanol. The Fast allele was found at highest frequency in populations that utilize hosts with high proportions of 2-propanol, while the Slow allele is most frequent in populations that utilize hosts with high proportions of 1-propanol. This suggests that selection for ADH-2 allozyme alleles with higher activity on the most abundant alcohols is occurring in each D. mojavensis population. In the other paralog, ADH-1, significant differences between D. mojavensis and D. arizonae are associated with a previously shown pattern of adaptive protein evolution in D. mojavensis. Examination of protein sequences showed that a large number of amino acid fixations between the paralogs have occurred in catalytic residues. These changes are potentially responsible for the significant difference in substrate specificity between the paralogs. Both functional and sequence variation within and between paralogs suggests that Adh has played an important role in the adaptation of D. mojavensis and D. arizonae to their cactophilic life.  相似文献   

3.
The Adh1-C mallele and each gene in the Adh1-FC mduplication have been cloned and restriction-mapped. Of the C mallele 6 kb was sequenced. A single amino acid substitution of aspartate for tyrosine at residue 52 accounts for the altered enzymatic properties of the C mprotein. Comparison of the nucleotide sequence to that of Adh1-1F and Adh1-1S shows structural and restriction site polymorphisms in the 3 flanking DNA. C mlacks the insertion sequence present in 1F and 1S and contains a complex sequence composed of two direct repeats and an inverted repeat. The two genes of the duplication allele have similar restriction maps to C mand each other.  相似文献   

4.
5.
6.
DNA variation in the alcohol dehydrogenase (Adh2) region of the wild rice Oryza rufipogon and its related species was analyzed to clarify maintenance mechanisms of the DNA variation in these species. A dimorphic pattern was detected in the Adh2 region of O. rufipogon. The silent nucleotide diversity (π) in the Adh2 region in O. rufipogon was 0.011, which was higher than that of the Adh1 region in O. rufipogon. Especially, a high nucleotide diversity was detected at synonymous sites of the catalytic domain 1. Average nucleotide diversity at silent sites within each of the dimorphic sequence types of the Adh2 region was similar to that in the Adh1 region, indicating that the high level of silent polymorphism in the Adh2 region was caused by the difference between the dimorphic sequence types. On the other hand, the level of replacement polymorphism in the Adh2 region was as low as that in the Adh1 region. The neutrality test of Fu and Li indicated significantly negative deviation from the neutral mutation model for the replacement sites of the Adh2 region. This result suggests purifying selection on the replacement sites of the Adh2 region, as detected for the Adh1 region. Significant linkage disequilibria (16.4% of the tests) were detected between the Adh1 and Adh2 regions. Even when nonrandom association was tested for the strains belonging to one of the divergent sequence types of the Adh2 region, significant interlocus linkage disequilibria were detected. The close physical distance and/or epistasis between the two Adh regions could be invoked to explain these nonrandom associations.  相似文献   

7.
The zinc-binding long-chain alcohol dehydrogenases from plants and animals exhibit a considerable level of amino acid sequence conservation. While the functional importance of many of the conserved residues is known, the role of others has not yet been determined. We have identified a naturally occurring Adh-1 allele in the legume Phaseolus acutifolius with several unusual characteristics. Individuals homozygous for this allele, Adh-1CN, possess a single isozyme starch gel electrophoretic pattern suggestive of a null allele, and exhibit ADH enzyme activity levels ca. 60% lower than the standard wild-type Adh-1F line. Interestingly, analysis of Adh-1CN homozygotes on an alternative gel system indicates that Adh-1CN does encode a polypeptide capable of forming functional homo- and heterodimers. However, the levels of ADH activity displayed by these isozymes are far lower than those observed for the corresponding wild type ADH-1F isozymes. Dialysis experiments indicate that isozymes containing the ADH-1CN polypeptide are inactivated by slightly acidic conditions, which may explain the apparent null phenotype on starch gels. Elevated temperatures cause a similar loss of enzyme activity. The deduced amino acid sequences of ADH-1CN and ADH-1F were obtained from their corresponding cDNA clones, and the only significant difference detected between the two is a single amino acid replacement substitution. Residue 144 is occupied by phenylalanine in the ADH-1F polypeptide, whereas serine occupies this position in the ADH-1CN polypeptide. The proximity of residue 144 to the catalytic zinc in the substrate-binding pocket, coupled with the fact that it is integral to a defined hydrophobic core of the ADH polypeptide, may explain the observed disruptive effect that the serine substitution has on both the activity and stability of the ADH-1CN polypeptide. It also provides an explanation for the maintenance of phenylalanine or the structurally similar tyrosine at this residue in Zn-binding long-chain ADHs.  相似文献   

8.
We examined levels and patterns of nucleotide variation in 21 strains of Drosophila kikkawai from Miyako island, Japan for the partial regions of the following seven nuclear genes: Adh, Ddc, esc, ksr, Pgi, su(f), and Tpi. The nucleotide variation at total sites (pi(t)) ranged from 0.0013 in the ksr, to 0.0173 in the Adh. The nucleotide divergence at total sites (K(t)) between D. kikkawai and D. lini ranged from 0.0286 in the Tpi to 0.0687 in the su(f). The levels of nucleotide polymorphism and divergence were heterogeneous among the investigated gene regions. The HKA test, which tests imbalance between the intra and interspecific nucleotide variation, showed that the intraspecific nucleotide variation in the Pgi region was much lower than the interspecific variation, while intraspecific variation in the Tpi region was only slightly lower than interspecific variation. The MK test showed an excess of low frequency replacement polymorphic changes in the Adh region, suggesting that most replacement mutations are deleterious. Fay and Wu's test detected an excess of newly arisen variants in the Ddc region. In total, four of the seven gene regions showed significant deviation from the neutrality.  相似文献   

9.
Members of species of the mulleri and hydei subgroups of the repleta group of Drosophila have duplicate Adh genes. The Adh regions of D. mojavensis, D. mulleri, and D. hydei contain three genes--a pseudogene, Adh-2, and Adh-1--arranged 5' to 3'. To understand the evolution of the triplicate Adh structure, we have cloned and sequenced the Adh locus of D. mettleri. This region consists of a 5' pseudogene and a 3' functional Adh gene. On the basis of the structure and nucleotide sequence comparisons of Adh genes of D. mettleri and other species, we propose that an initial duplication of the ancestral Adh gene generated two Adh genes arranged in tandem. The more 5' Adh gene became a pseudogene, while the more 3' gene remained functional through all the developmental stages. A second duplication of this 3' gene resulted in Adh regions with three genes--a pseudogene, Adh-2, and Adh-1.  相似文献   

10.
11.
The unstable mutation Adh1-Fm335 contains a Dissociation (Ds1) transposable element at position +53 in the untranslated leader of the maize Alcohol dehydrogenase-1 (Adh1) gene. Excision of Ds1 is known to generate new alleles with small additions and rearrangements of Adh1 DNA. We characterized 16 revertant alleles with respect to ADH1 activity levels in scutellum (nutritive tissue of the seed), anaerobic root, and pollen. Whereas gene expression was not different from the wild type in the sporophytic tissues of the scutellum and anaerobic root, there were strong allelic differences in pollen. One allele underexpressed pollen ADH1 at 48% of the wild-type level, and another overexpressed pollen ADH1 at 163% of the wild-type level. Quantitative RNase protection assays demonstrated that the mutant phenotypes reflected changes in the levels of steady state mRNA in pollen. These data provide a definitive demonstration of an overexpression mutant in plants and further show that marked increases in mRNA levels can follow minor alterations in central untranslated leader sequences. The nucleotide sequence of 12 new revertant alleles and the molecular mechanisms responsible for pollen-specific gene expression are discussed.  相似文献   

12.
13.
Roose ML  Gottlieb LD 《Genetics》1980,95(1):171-186
Study of the biochemical genetics of alcohol dehydrogenase (ADH) in the annual plant Stephanomeria exigua (Compositae) revealed that the isozymes are specified by a small family of tightly linked structural genes. One set of ADH isozymes (ADH-1) was induced in roots by flooding, and was also expressed in thickened unflooded tap roots, stems, ovaries and seeds. As in other plants, the enzymes are dimeric and form homo- and heterodimers. An electrophoretic survey of ADH-1 phenotypes in two natural populations revealed seven different ADH-1 homodimers in various phenotypes having one to eight enzyme bands. Genetic analysis of segregations from crosses involving 59 plants showed that the ADH-1 isozymes are inherited as a single Mendelian unit, Adh1. Adh1 is polymorphic for forms that specify one, two, or three different ADH-1 subunits (which combine to form homo- and heterodimers), and are expressed co-dominantly in all genotypic combinations. Staining intensity of enzymes extracted from various homozygous and heterozygous plants indicated that the different subunit types specified by Adh1 are produced in approximately equal amounts. These observations suggest that Adh1 is a compound locus consisting of one to several tightly linked (0 recombinants among 579 testcross progeny), coordinately expressed structural genes. The genes in the two triplications also occur in various duplicate complexes and thus could have originated via unequal crossing over. The ADH-2 isozyme found in pollen and seeds is apparently specified by a different gene, Adh2. Adh1 and Adh2 are tightly linked (0 recombinants among 81 testcross progeny).  相似文献   

14.
15.
Summary Because natural populations ofDrosophila melanogaster are polymorphic for different allozymes of alcohol dehydrogenase (ADH) and becauseD. melanogaster is more tolerant to the toxic effects of ethanol than its sibling speciesD. simulans, information regarding the sensitivities of the different forms of ADH to the products of ethanol degradation are of ecological importance. ADH-F, ADH-S, ADH-71k ofD. melanogaster and the ADH ofD. simulans were inhibited by NADH, but the inhibition was relieved by NAD+. The order of sensitivity of NADH was ADH-F<ADH-71k, ADH-S<ADH-simulans with ADH-F being about four times less sensitive than theD. melanogaster enzymes and 12 times less sensitive than theD. simulans enzyme. Acetaldehyde inhibited the ethanolto-acetaldehyde activity of the ADHs, but at low acetaldehyde concentrations ethanol and NAD+ reduced the inhibition. ADH-71k and ADH-F were more subject to the inhibitory action of acetaldehyde than ADH-S and ADH-simulans, with ADH-71k being seven times more sensitive than ADH-S. The pattern of product inhibition of ADH-71k suggests a rapid equilibrium random mechanism for ethanol oxidation. Thus, although the ADH variants only differ by a few amino acids, these differences exert a far larger impact on their intrinsic properties than previously thought. How differences in product inhibition may be of significance in the evolution of the ADHs is discussed.  相似文献   

16.
The nucleotide sequence of the rodC operon of Bacillus subtilis   总被引:10,自引:0,他引:10  
The rodC1 mutation of Bacillus subtilis is a temperature-sensitive marker which affects the levels of teichoic acid synthesis and the cellular morphology. We have determined the nucleotide sequence of the bicistronic operon which contains the rodC gene and the nucleotide sequence of the rodC1 mutant allele. The temperature-sensitive phenotype of the rodC mutant is the result of a single base-pair change. A cytosine to thymine transition in the non-coding strand results in the replacement of a serine residue in the wild-type protein with a phenylalanine residue in the mutant protein. The other gene in the operon, the rodD gene, appears to be equivalent to the gtaA gene which encodes uridine diphosphate-glucose poly-(glycerol phosphate) alpha-glucosyl transferase, an enzyme involved in techoic acid synthesis. This is the first nucleotide sequence analysis of both the wild-type and mutant alleles of a morphogene in B. subtilis.  相似文献   

17.
Summary The nucleotide sequence of theFast-Chateau Douglas isolate of the thermostable alcohol dehydrogenase allele is compared with the sequences of theSlow andFast alleles ofDrosophila melanogaster. Conceptual translation of theFChD sequence indicates that the thermostable polypeptide has the diagnostic FAST amino acid replacement at residue 192 and an additional replacement of serine for proline at residue 214. This suggests aFast origin for the thermostableAdh allele. However, some of the biochemical properties of the FCHD protein resemble those of the SLOW rather than the FAST polypeptides. The serine for proline replacement confers upon the thermostable polypeptide substrate specificities and some kinetic parameters similar to the SLOW protein. The same replacement substitution within the third coding exon also appears to alter the ADH protein concentration to a level similar to the SLOW polypeptide and the probable effect is at the level of mRNA concentration. The low level of nucleotide sequence variation, other than that leading to the amino acid substitution, suggests a recent origin for the thermostable allele. The time since divergence of theFChD sequence fromFast is estimated to be approximately 260,000–470,000 years.  相似文献   

18.
19.
Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase   总被引:6,自引:0,他引:6  
Summary Plants regenerated from tissue cultures of maize were screened for variants of ADH1 and ADH2. Root extracts of 645 primary regenerant plants were tested, and one stable mutant of Adh1 was detected. The mutant gene (Adh1-Usv) produces a functional enzyme with a slower electrophoretic mobility than that of the progenitor Adh1-S allele, and is stably transmitted to progeny. The mutant was not present among four other plants derived from the same immature embryo, and therefore arose as a consequence of the culture procedure. The gene of Adh1-Usv was cloned and sequenced. A single base change in exon 6 was the only alteration found in the gene sequence. This would translate in the polypeptide sequence to a valine residue substituting for a glutamic acid residue, resulting in the loss of a negative charge and the production of a protein with slower electrophoretic mobility.Abbreviations kb kilobase pairs - ADH alcohol dehydrogenase  相似文献   

20.
Organization and evolution of the alcohol dehydrogenase gene in Drosophila   总被引:6,自引:0,他引:6  
The alcohol dehydrogenase (Adh) gene was isolated from Drosophila simulans and D. mauritiana, and the DNA sequence of a 4.6-kb region, containing the structural gene and flanking sequence, was determined for each. These sequences were compared with the Adh region of D. melanogaster to characterize changes that occur in the Drosophila genome during evolution and to identify conserved sequences of functional importance. Drosophila simulans and D. mauritiana Adh are organized in a manner similar to that of D. melanogaster Adh, including the presence of two promoters for the single Adh gene. This study identified conserved flanking elements that, in conjunction with other studies, suggest regions that may be involved in the control of Adh expression. Inter- and intraspecies comparisons revealed differences in the kinds of sequence changes that have accumulated. Sequence divergence in and around the Adh gene was used to assess inter- and intraspecies evolutionary relationships. Finally, there appears to be an unrelated structural gene located directly 3' of the Adh transcribed region.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号