首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
单纯疱疹病毒(HSV)Ⅰ型及Ⅱ型之间有很多共同抗原,能引起血清学交叉反应,鉴别诊断比较困难。本实验利用重组DNA技术,将部分HSV-2DNA的PstI片段克隆到载体质粒PSK中,并筛选出两个重组质粒(P和P)只与HSV-2反应,与HSV-1不反应,这两个重组质粒中所含的HSV-2DNA片段大小分别是3.1和4.3kb,另外,还筛选了一个重组质粒(PHSV2-1,含5.8kbHSV-2DNA片段)与HSV-1和HSV-2均反应。将4.3kb的片段用光生物素标记后作为探针检测了159份人阴道拭子,其中23份样品呈阳性反应,其余均为阴性,从23份阳性样品中挑选12价涂片用间接荧光抗体法检测也都呈阳性反应,随机挑选的几份杂交反应阴性样品在间接荧光试验中也是阴性。本实验制备的HSV通用及HSV-2型特异性探针将比常规的血清学方法诊断和鉴别HSV-1和HSV-2感染更为可靠。  相似文献   

2.
In an earlier paper (Morse et al., J. Virol 24:231--248, 1977) we reported on the provenance of the DNA sequences in 26 herpes simplex virus type 1 (HSV-1) X HSV-2 recombinants as determined from analyses of their DNAs with at least five restriction endonucleases. This report deals with the polypeptides specified by the recombinants and by their HSV-1 and HSV-2 parents. We have identified (i) the corresponding HSV-1 and HSV-2 polypeptides with molecular weights ranging from 20,000 to more than 200,000, (ii) the polypeptides that undergo rapid post-translational processing, and (iii) polypeptides that vary intratypically in apparent molecular weight. By comparing the segregation patterns of the polypeptides with those of the DNA sequence of the recombinants, we have mapped the templates specifying 26 polypeptides and several viral functions on the physical map of HSV DNA. The data show the following: (i) alpha polypeptides map at the termini of the L and S components of the HSV DNA. Although alpha ICP 27 maps entirely within the reiterated region of the L component, the template for alpha ICP 4 may lie only in part within the reiterated sequences of the S component. Of note is the finding that cells infected with a recombinant that contains both HSV-1 and HSV-2 DNA sequences in the S component produced alpha ICP 4 of both HSV-1 and HSV-2. (ii) Templates specifying beta and gamma polypeptides map in the L component and appear to be randomly distributed. (iii) Thymidine kinase and resistance to phosphonoacetic acid mapped in the L component. In addition, we have taken advantage of the rapid inhibition of host protein synthesis characteristic of HSV-2 infections and syncytial plaque morphology to also map the template(s) responsible for these functions in the L component. The implications of the template arrangement in HSV DNA are discussed.  相似文献   

3.
We present the locations of the cleavage sites for the BamI, KpnI, and SalI restriction endonucleases within the DNA molecules of herpes simplex virus type 1 (HSV-1) strains Justin and F. These restriction enzymes cleave the HSV-1 DNA at many sites, producing relatively small fragments which should prove useful in future studies of HSV-1 gene structure and function. The mapping data revealed the occurrence of heterogeneity within three regions of the viral genome including (i) the region spanning map coordinates 0.74--0.76, (ii) the ends of the large (L) DNA component, and (iii) the junction between the large (L) and the small (S) components. The heterogeneity in the ends of L and the S-L junctions of HSV-1 (Justin) and HSV-1 (F) DNAs was grossly similar to that previously reported to occur in the ends of L and the S-L junctions of the HSV-1 (KOS) DNA (M. J. Wagner and W. C. Summers, J. Virol. 27:374--387, 1978). Thus, cleavage of these regions with restriction endonucleases yielded sets of minor fragments differing in size by constant increments. However, the various strains of HSV-1 differed with respect to the numbers, size increments, and relative molarities of the various minor fragments, suggesting that the parameters of the heterogeneity are inherited in the structural makeup of the HSV-1 genome. The strain dependence of the pattern of heterogeneity can be most easily explained in terms of variable sizes of the terminally reiterated a sequence, contained in the DNA molecules of these three strains of HSV-1.  相似文献   

4.
5.
D N Everly  Jr  G S Read 《Journal of virology》1997,71(10):7157-7166
During lytic herpes simplex virus (HSV) infections, the half-lives of host and viral mRNAs are regulated by the HSV virion host shutoff (Vhs) protein (UL41). The sequences of the UL41 polypeptides of HSV type 1 (HSV-1) strain KOS and HSV-2 strain 333 are 87% identical. In spite of this similarity, HSV-2 strains generally shut off the host more rapidly and completely than HSV-1 strains. To examine type-specific differences in Vhs function, we compared the Vhs activities of UL41 alleles from HSV-1(KOS) and HSV-2(333) by assaying the ability of a transfected UL41 allele to inhibit expression of a cotransfected reporter gene. Both HSV-1 and HSV-2 alleles inhibited reporter gene expression over a range of vhs DNA concentrations. However, 40-fold less of the HSV-2 allele was required to yield the same level of inhibition as HSV-1, indicating that it is significantly more potent. Examination of chimeric UL41 alleles containing various combinations of HSV-1 and HSV-2 sequences identified three regions of the 333 polypeptide which increase the activity of KOS when substituted for the corresponding amino acids of the KOS protein. These are separated by two regions which have no effect on KOS activity, even though they contain 43 of the 74 amino acid differences between the parental alleles. In addition, alleles encoding a full-length KOS polypeptide with a 32-amino-acid N-terminal extension retain considerable activity. The results begin to identify which amino acid differences are responsible for type-specific differences in Vhs activity.  相似文献   

6.
To analyze the boundaries of the functional coding region of the HSV-2(333) thymidine kinase gene (TK gene), deletion mutants of hybrid plasmid pMAR401 H2G, which contains the 17.5 kbp BglII-G fragment of HSV-2 DNA, were prepared and tested for capacity to transform LM(TK-) cells to the thymidine kinase-positive phenotype. These studies showed that hybrid plasmids containing 2.2-2.4 kbp subfragments of HSV-2 BglII-G DNA transformed LM(TK-) cells to the thymidine kinase-positive phenotype and suggested that the region critical for transformation might be less than 2 kbp. That the activity expressed in the transformants was HSV-2 thymidine kinase was shown by experiments with type-specific enzyme-inhibiting rabbit antisera and by disc-polyacrylamide gel electrophoresis analyses. DNA fragments of the HSV-2 TK gene were subcloned in phage M13mp9 and M13mp8. A sequence of 1656 bp containing the entire coding region of the TK gene and the flanking sequences was determined by the dideoxynucleotide chain termination method. Comparisons with the HSV-1(Cl 101) TK gene revealed that PstI, PvuII, and EcoRI cleavage sites had homologous locations as did promoter, translational start and stop, and polyadenylation signals. Extensive homology was observed in the nucleotide sequence preceding the ATG translational start signal and in portions of the coding region of the genes. Comparisons of the predicted amino acid sequences of the HSV-1 and HSV-2 thymidine kinase polypeptides revealed that both were enriched in alanine, arginine, glycine, leucine, and proline residues and that clear, but interrupted homology existed within several regions of the polypeptide chains. Stretches of 15-30 amino acid residues were identical in conserved regions. The possibility is suggested that domains containing some of the conserved amino acid sequences might have a role in substrate binding and as major antigenic determinants.  相似文献   

7.
Sequences representative of the whole genome of herpes simplex virus type 1 (HSV-1) strain KOS were cloned in the plasmid vector pBR325 in the form of EcoRI-generated DNA fragments. The cloned fragments were identified by digestion of the chimeric plasmid DNA with restriction enzymes EcoRI or EcoRI and BglII followed by comparison of their electrophoretic mobilities in agarose gels with that of similarly digested HSV-1 virion DNA. The cloned fragments showed the same migration patterns as the corresponding fragments from restricted virion DNA, indicating that no major insertions or deletions were present. The presence of HSV-1 sequences in the chimeric plasmids was confirmed by hybridization of plasmid DNA to HSV-1 virion DNA. Additionally, some of the cloned fragments were shown to be biologicaly active in that they efficiently rescued three HSV-1 temperature-sensitive mutants in cotransfection marker rescue experiments.  相似文献   

8.
Many viruses interfere with apoptosis of infected cells, presumably preventing cellular apoptosis as a direct response to viral infection. Since cytotoxic T lymphocytes (CTL) induce apoptosis of infected cells as part of the “lethal hit,” inhibition of apoptosis could represent an effective immune evasion strategy. We report here herpes simplex virus type 1 (HSV-1) interference with CTL-induced apoptosis of infected cells and show that HSV-1 inhibits the nuclear manifestations of apoptosis but not the membrane changes. The HL-60 cell line (human promyelocytic leukemia) undergoes apoptosis in response to many stimuli, including incubation with ethanol. After HSV-1 infection (strains E115 and 17+), ethanol-treated cells did not produce oligonucleosomal DNA fragments characteristic of apoptosis, as assayed by gel electrophoresis and enzyme-linked immunosorbent assay. Inhibition was detected 2 h after infection and increased over time. Importantly, HSV-1-infected cells were resistant to apoptosis induced by antigen-specific CD4+ CTL, despite the fact that CTL recognition and degranulation in response to infected targets remained intact. Unlike HSV-1, HSV-2 (strains 333 and HG52) did not inhibit DNA fragmentation. In contrast to the inhibition of DNA fragmentation by HSV-1, none of the HSV-1 or -2 strains interfered with the ethanol-induced exposure of surface phosphatidylserine characteristic of apoptosis, as determined by annexin V binding. These results demonstrate that genes of HSV-1 inhibit the nuclear manifestations of apoptosis but not the membrane manifestations, suggesting that these may be mediated via separate pathways. They also suggest that HSV-1 inhibition of CTL-induced apoptosis may be an important mechanism of immune evasion.  相似文献   

9.
Herpes simplex virus type 2 (HSV-2) strains inhibit the synthesis of both DNA and protein of the host cell more rapidly than HSV-1 strains. Several intertypic HSV-1 X HSV-2 recombinants and parental strains were examined for their ability to inhibit rapidly the synthesis of host protein and DNA. The two functions cosegregated in all of eight recombinants tested and are therefore controlled by the same gene or by different genes in the same region of the viral DNA.  相似文献   

10.
Herpes simplex virus type 1 (HSV-1) replication produces large intracellular DNA molecules that appear to be in a head-to-tail concatemeric arrangement. We have previously suggested (A. Severini, A.R. Morgan, D.R. Tovell, and D.L.J. Tyrrell, Virology 200:428-435, 1994) that these DNA species may have a complex branched structure. We now provide direct evidence for the presence of branches in the high-molecular-weight DNA produced during HSV-1 replication. On neutral agarose two-dimensional gel electrophoresis, a technique that allows separation of branched restriction fragments from linear fragments, intracellular HSV-1 DNA produces arches characteristic of Y junctions (such as replication forks) and X junctions (such as merging replication forks or recombination intermediates). Branched structures were resolved by T7 phage endonuclease I (gene 3 endonuclease), an enzyme that specifically linearizes Y and X structures. Resolution was detected by the disappearance of the arches on two-dimensional gel electrophoresis. Branched structures were also visualized by electron microscopy. Molecules with a single Y junction were observed, as well as large tangles containing two or more consecutive Y junctions. We had previously shown that a restriction enzyme which cuts the HSV-1 genome once does not resolve the large structure of HSV-1 intracellular DNA on pulsed-field gel electrophoresis. We have confirmed that result by using sucrose gradient sedimentation, in which both undigested and digested replicative intermediates sediment to the bottom of the gradient. Taken together, our experiments show that the intracellular HSV-1 DNA is held together in a large complex by frequent branches that create a network of replicating molecules. The fact that most of these branches are Y structures suggests that the network is held together by frequent replication forks and that it resembles the replicative intermediates of bacteriophage T4. Our findings add complexity to the simple model of rolling-circle DNA replication, and they pose interesting questions as to how the network is formed and how it is resolved for packaging into progeny virions.  相似文献   

11.
K Umene 《Journal of virology》1994,68(7):4377-4383
DNA fragments corresponding to the unit-length a sequence of herpes simplex virus type 1 (HSV-1) were identified in HSV-1 DNA preparations extracted by the method of Hirt. The DNA fragments were molecularly cloned, and nucleotide sequences were determined. Most termini of the fragments were at sites on DR1 corresponding to the termini of linear HSV-1 DNA generated by the cleavage-packaging system. In one-step growth experiments, DNA fragments of the unit-length a sequence appeared simultaneously with the termini of linear HSV-1 DNAs produced by cleavage of circular and concatemeric DNAs. Therefore, excision of the unit-length a sequence appeared closely related to the cleavage-packaging system. Termini of the excised DNA fragments of the variant a sequence with two DR2 arrays varied on the L-component side, while termini on the S-component side were at the site on DR1 corresponding to the authentic cleavage site. It is thus assumed that the cleavage-packaging system functions adequately on the DR1 second distal from the S component, and cleavages of other DR1 are rare and less accurate. If this notion is tenable, then most termini on the S-component side of the excised DNA fragments are derived from the second DR1 properly cleaved and should be constant, while termini on the L-component side are from regions on and around the DR1 third distal from the S component and may be variable. Cleavage of DR1 is likely to be affected by the topological relationship with the S component.  相似文献   

12.
The application of naked DNA containing type I interferon (IFN) transgenes is a promising potential therapeutic approach for controlling chronic viral infections. Herein, we detail the application of this approach that has been extensively used to restrain ocular HSV-1 infection, for antagonizing vaginal HSV-2 infection. We show that application of IFN-α1, -α 5, and -β transgenes to vaginal mouse lumen 24 hours prior to HSV-2 infection reduces HSV-2 mediated mortality by 2.5 to 3-fold. However, other type I IFN transgenes (IFN- α 4, -α 5, -α 6, and -α 9) are non effectual against HSV-2. We further show that the efficacy of IFN-1 transgene treatment is independent of CD4+ T lymphocytes. However, in mice depleted of CD8+ T lymphocytes, the ability of IFN-α 1 transgene treatment to antagonize HSV-2 was lost.  相似文献   

13.
Wang X  Zhang GR  Yang T  Zhang W  Geller AI 《BioTechniques》2000,28(1):102-107
Herpes simplex virus type 1 (HSV-1) plasmid vectors have a number of attractive features for gene transfer into neurons. In particular, the large size of the HSV-1 genome suggests that HSV-1 vectors might be designed to accommodate large inserts. We now report the construction and characterization of a 51 kb HSV-1 plasmid vector. This vector was efficiently packaged into HSV-1 particles using a helper virus-free packaging system. The structure of the packaged vector DNA was verified by both Southern blot and PCR analyses. A vector stock was microinjected into the rat striatum, the rats were sacrificed at 4 days after gene transfer, and numerous X-gal positive striatal cells were observed. This 51 kb vector was constructed using general principles that may support the routine construction of large vectors. Potential applications of such HSV-1 vectors include characterizing large promoter fragments or genomic clones and co-expressing multiple genes.  相似文献   

14.
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inhibits the replication of both human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1). The mechanism of inhibition is not clear. This investigation explored the effects of TCS on the stages of HSV-1 infection in Hep-2 cells, from attachment to release. We demonstrated that TCS reduced HSV-1 antigen and DNA content and interfered with viral replication as early as 3-15 h after infection. TCS had no effect on HSV-1 attachment, penetration or immediate-early gene expression. However, the expression of early and late genes and virion release were diminished. In summary, this study demonstrates that TCS primarily affects HSV-1 replication in Hep-2 cells during the early to late infection period.  相似文献   

15.
Following peripheral inoculation of experimental animals, herpes simplex virus type 2 (HSV-2) strains are more virulent than HSV-1 strains, and clinical studies suggest that they possess enhanced virulence in humans. One dramatic type-specific difference in virulence is observed following inoculation of the chorioallantoic membrane (CAM) of the chicken embryo: HSV-2, but not HSV-1, makes large pocks on the CAM, invades the mesoderm, generalizes in the embryo, and kills the chicken. These properties have been believed to be specific for HSV-2, and their molecular basis is unknown. We now report that an HSV-1 strain, ANG, behaves even more efficiently than HSV-2. In addition, we have transferred restriction fragments of ANG DNA to another HSV-1 strain, 17 syn+, conferring the CAM virulence phenotype on the normally CAM-avirulent 17 syn+. Like ANG, these recombinant viruses are 10(6)-fold more virulent (PFU/50%) lethal dose [LD50] ratio, less than or equal to 10(2)) than the parental 17 syn+ strain (PFU/LD50 ratio, greater than or equal to 10(8)). A molecularly cloned library of ANG DNA was used to identify two distinct regions containing the virulence functions. Transfer of sequences contained in either cloned ANG EcoRI fragment A (0.49 to 0.64 map units) or F (0.32 to 0.42 map units) DNA to 17 syn+ confers CAM virulence, whereas other cloned regions of the ANG genome do not. Using cloned DNA, we derived and plaque purified several virulent recombinant viruses with inserts from either the ANG EcoRI fragment A (INV-I) or F (INV-II) areas. In each instance, the transfer of the cloned INV-I or INV-II sequences enhanced virulence for the chicken embryo 10(6)-fold (PFU/LD50 ratio, less than or equal to 10(2]. In addition, the transfer of the cloned ANG EcoRI-F INV-II sequences resulted in a 10(3)-fold enhancement of neuroinvasiveness and virulence for mice. Following footpad inoculation, these recombinants kill mice with a PFU/LD50 ratio of approximately 10(3) (similar to HSV-2 strains) compared with 10(6) for 17 syn+. Thus, we have identified, cloned, and transferred two DNA regions from HSV-1 ANG which contain virulence genes (INV-I and INV-II) important in mesodermal invasiveness on the CAM and, in the case of INV-II, neuroinvasiveness in the mouse. In each instance, the recombinant HSV-1 viruses have attained enhanced virulence beyond that described for HSV-1 strains and similar to that seen with HSV-2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The deoxyribonuclease induced in KB cells by herpes simplex virus (HSV) type 1 and type 2 has been purified. Both enzymes are able to completely degrade single- and double-stranded DNA yielding 5'-monophosphonucleotides as the sole products. A divalent cation, either Mg2+ or Mn2+, is an absolute requirement for catalysis and a reducing agent is necessary for enzyme stability. The maximum rate of reaction is achieved with 5 mM MgCl2 for both HSV-1 and HSV-2 DNase. The optimum concentration for Mn2+ is 0.1 to 0.2 mM and no exonuclease activity is observed when the concentration of Mn2+ is greater than 1 mM. The rate of reaction at the optimal Mg2+ concentration is 3- to 5-fold greater than that at the optimal Mn2+ concentration. In the presence of Mg2+, the enzymes are inhibited upon the addition of Mn2+, Ca2+, and Zn2+. The enzymatic reaction is also inhibited by spermine and spermidine, but not by putrescine. Crude and purified HSV-1 and HSV-2 DNase can degrade both HSV-1 and HSV-2 DNA, but native HSV-1 DNA is hydrolyzed at only 22% of the rate and HSV-2 DNA at only 32% of the rate of Escherichia coli DNA. Although HSV-1 and HSV-2 DNase were similar, minor differences were observed in most other properties such as pH optimum, inhibition by high ionic strength, activation energy, and sedimentation coefficient. However, the enzymes differ immunologically.  相似文献   

17.
Immunogenic activity of herpes simplex type 1 temperature sensitive mutant's (ts HSV-1 mutant) proteins was tested in two systems: monovalent and polyvalent with other attenuated virus strains (measles and mumps). The guinea pigs were used as animal model. In monovalent system the humoral response in animals infected with ts HSV-1 mutant (1 or 2 doses) was studied and compared to results received for HSV-1 native strain. In polyvalent system the immunological response induced by ts HSV-1 mutant in the presence of RNA virus strains was tested.  相似文献   

18.
An Fc-binding glycoprotein, designated gE, was detected previously in cells infected with herpes simplex virus type 1 (HSV-1) and in virion preparations isolated from infected cells. For the studies reported here, we purified gE from HSV-1 strain HFEM(syn) by affinity chromatography and preparative electrophoresis and then immunized a rabbit to produce an antiserum to glycoprotein gE. We found that this antiserum selectively precipitated gE and its precursors from detergent-solubilized extracts of HSV-1 strain HFEM(syn)-infected HEp-2 cells, from extracts of other cell lines infected with the same virus, and from extracts of HEp-2 cells infected with several other HSV-1 strains. The antiserum did not precipitate any proteins from uninfected cells. The several forms of gE detected by immunoprecipitation accumulated in variable quantities in different cells infected with the different virus strains and also varied slightly with respect to electrophoretic mobility, suggesting some differences in the gE's from different HSV-1 strains and some effects of the host cell on the nature and extent of post-translational processing. One of the electrophoretic forms of gE previously detected in purified preparations of virions could be precipitated by anti-gE from extracts of purified HSV-1 strain HFEM(syn) virions. Moreover, anti-gE neutralized HSV-1 infectivity, but only in the presence of complement. Finally, F(ab')2 fragments of the anti-gE immunoglobulin partially inhibited the binding of 125I-labeled immunoglobulin G to the Fc receptors on HSV-1-infected cells.  相似文献   

19.
Umene K 《Journal of virology》2001,75(13):5870-5878
The A sequence of herpes simplex virus type 1 (HSV-1) is a region bracketed by two direct repeats named DR1. Concatemeric HSV-1 DNA, the product of DNA replication, is cleaved at a specific site on the second DR1 distal from the S component (authentic cleavage) to yield unit-length linear HSV-1 DNA prior to or during packaging of HSV-1 DNA. The presence of two DNA bands, of 0.25 kb (shorter band) and 0.5 kb (longer band), the lengths of which correspond to one and two units of the A sequence, was identified using acrylamide gel electrophoresis of HSV-1 DNA preparations extracted by the method of Hirt. Twelve DNA fragments from each band were molecularly cloned, and nucleotide sequences were determined. Both termini of eight (67%) DNA clones from the shorter band corresponded to the specific cleavage site on DR1. Five (41%) DNA clones from the longer band had a terminus corresponding to the specific cleavage site on DR1 on one side, but not on the opposite side. Thirteen (54%) of 24 termini of 12 analyzed DNA clones from the longer band were in and around DR1. Thus, cleavage events of DR1 can be classified into three categories: (i) authentic cleavage; (ii) site-specific cleavage on the third DR1 distal from the S component (secondary site-specific cleavage), which is related to the generation of the shorter DNA band in combination with authentic cleavage; and (iii) less-specific cleavage events in and around other DR1 elements which relate to the generation of the longer DNA band.  相似文献   

20.
Real-time PCR was used to determine the ratio of viral and host DNA in lysates of Vero cells infected with HSV-1 strain L2. The number of virus copies reached a maximum after 24 h of incubation. Total isolated DNA was sequenced using the massively parallel sequencing technique on an Ion Torrent apparatus. Nucleotide sequences of thymidine kinase (UL23) and DNA polymerase (UL30) genes of a HSV-1 L2 population were determined; their primary structures were compared to those of other standard HSV-1 strains, KOS and 17. The detected differences between the UL23 and UL30 sequences of L2 and reference strains KOS and 17 were unimportant because these substitutions did not affect the conserved gene regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号