首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liu SQ  Golan DE 《Biophysical journal》1999,76(3):1679-1692
T lymphocyte activation through the T cell receptor (TCR)/CD3 complex alters the avidity of the cell surface adhesion receptor CD2 for its ligand CD58. Based on the observations that activation-associated increases in intracellular [Ca2+] ([Ca2+]i) strengthen interactions between T cells and antigen-presenting cells, and that the lateral mobility of cell surface adhesion receptors is an important regulator of cellular adhesion strength, we postulated that [Ca2+]i controls CD2 lateral mobility at the T cell surface. Human Jurkat T leukemia cells were stimulated by antibody-mediated cross-linking of the TCR/CD3 complex. CD2 was labeled with a fluorescently conjugated monoclonal antibody. Quantitative fluorescence microscopy techniques were used to measure [Ca2+]i and CD2 lateral mobility. Cross-linking of the TCR/CD3 complex caused an immediate increase in [Ca2+]i and, 10-20 min later, a decrease in the fractional mobility of CD2 from the control value of 68 +/- 1% to 45 +/- 2% (mean +/- SEM). One to two hours after cell stimulation the fractional mobility spontaneously returned to the control level. Under these and other treatment conditions, the fraction of cells with significantly elevated [Ca2+]i was highly correlated with the fraction of cells manifesting significantly reduced CD2 mobility. Pretreatment of cells with a calmodulin inhibitor or a calmodulin-dependent kinase inhibitor prevented Ca2+-mediated CD2 immobilization, and pretreatment of cells with a calcineurin phosphatase inhibitor prevented the spontaneous reversal of CD2 immobilization. These data suggest that T cell activation through the TCR/CD3 complex controls CD2 lateral mobility by a Ca2+/calmodulin-dependent mechanism, and that this mechanism may involve regulated phosphorylation and dephosphorylation of CD2 or a closely associated protein.  相似文献   

3.
Stimulation of many nonexcitable cells by Ca2(+)-mobilizing receptor agonists causes oscillating elevations of the intracellular free Ca2+ concentration ((Ca2+]i), rather than a continuous increase. It has been proposed that the frequency at which [Ca2+]i oscillates determines the biological response. Because the occurrence of [Ca2+] oscillations is observed together with endogenous inositol polyphosphate (InsPs) production or following InsPs application, we injected Xenopus laevis oocytes with InsPs and monitored Ca2(+)-activated Cl- currents as an assay of [Ca2+]i. Microinjection of the poorly metabolizable inositol trisphosphate (InsP3) derivatives inositol 2,4,5-trisphosphate (Ins(2,4,5)P3) and inositol 1,4,5-trisphosphorothioate (Ins(1,4,5) P3S3) induced [Ca2+]i oscillations. The frequency at which [Ca2+]i oscillated increased with the injected dose, indicating that the frequency-generating mechanism lies distal to InsP3 production and that generation of oscillations does not require either oscillation of InsP3 levels or InsP3 metabolism. Injections of high doses of Ins(1,4,5)P3 or Ins(2,4,5)P3 inhibited ongoing oscillations, whereas Ca2+ injections decreased the amplitude of Ins(2,4,5)P3-induced oscillations without altering their frequency. Injections of the Ins(1,4,5)P3 metabolite inositol 1,3,4,5-tetrakisphosphate also caused oscillations whose frequency was related to the injected dose, although inositol tetrakisphosphate injection induced an increase in the cellular level of Ins(1,4,5)P3. The results suggest a multicomponent oscillatory system that includes the InsP3 target as well as a Ca2(+)-sensitive step that modulates amplitude.  相似文献   

4.
Exposure of T94, a CD4+ V beta 8-expressing murine Th cell clone, or immediately ex vivo CD4+ T cells to deaggregated, bivalent antibodies specific for either the TCR or CD3 failed to induce an increase in [Ca2+]i, or activation of phosphatidylinositol hydrolysis unless cross-linked with a secondary anti-Ig antibody. In contrast, we show that a combination of two mAb directed against different components of the TCR/CD3 complex (145.2C11, anti-CD3 epsilon and F23.1, anti-V beta 8) successfully induce second messenger formation, that is, without any requirement for a secondary antibody. This requirement for either a secondary antibody or two independent bivalent antibodies to activate second messenger production in T cells suggested that the signal transduction apparatus may be activated by multiple TCR/CD3 complexes being brought together on the T cell surface. This was supported by the observation that conditions inducing increased T cell [Ca2+]i through the TCR/CD3 complex also resulted in aggregation of the TCR/CD3 complex on the T cell surface. Conversely, binding of anti-TCR/CD3 antibodies to the T cell under conditions that did not induce increased [Ca2+]i also failed to induce surface TCR/CD3 redistribution. Cross-linking of the CD4 accessory molecule on T94 also resulted in increased [Ca2+]i, with kinetics similar to those observed after TCR/CD3 oligomerization. CD4 is involved in the recognition of invariant regions of MHC class II during Ag presentation and has been proposed to be associated with TCR/CD3 in the absence of Ag. Aggregation of TCR/CD3 and subsequent second messenger formation was achieved by combinations of mAb to distinct determinants within the complex due to the stable association of these determinants within the T cell membrane. We therefore assessed the functional association of CD4 with the TCR/CD3 complex by examining whether a combination of mAb directed against CD4 and CD3 or TCR induced second messenger formation. We found that anti-CD4 in combination with F23.1 or with 145.2C11 failed to induce increases in [Ca2+]i. Furthermore, mAb to CD4 failed to inhibit the increase in [Ca2+]i observed with the combination of 145.2C11 and F23.1. We therefore conclude that CD4 is not stably associated with TCR or CD3 in the absence of Ag/MHC class II composites.  相似文献   

5.
Single rat hepatocytes, microinjected with the Ca(2+)-sensitive photoprotein aequorin, respond to agonists acting through the phosphoinositide signalling pathway by the generation of oscillations in cytosolic free Ca2+ concentration ([Ca2+]i). The duration of [Ca2+]i transients generated is characteristic of the stimulating agonist; the differences lie in the rate of fall of [Ca2+]i from its peak. We considered that differential sensitivity of the InsP3 receptor may underlie agonist specificity. The thiol reagent, thimerosal, is known to increase the sensitivity of the Ca2+ stores to InsP3 by increasing the affinity of the InsP3 receptor for InsP3 in rat hepatocytes. We show here that a low dose of thimerosal (1 microM), insufficient alone to elevate [Ca2+]i, potentiates [Ca2+]i oscillations induced by phenylephrine or ATP in single, aequorin-injected, rat hepatocytes. Moreover, thimerosal enhances both the frequency and amplitude of phenylephrine-induced oscillations, whereas, in contrast, ATP-induced oscillations undergo an increase in the duration of the falling phase of individual [Ca2+]i transients. Thimerosal, therefore, enhances, rather than eliminates, agonist-specific differences in the hepatocyte [Ca2+]i oscillator.  相似文献   

6.
Fluorescent Ca2+ probes and digital photo-sectioning techniques were used to directly study the dynamics of Ca2+ in isolated mast cell granules of normal (CB/J) and beige (Bg(j)/Bg(j)) mice. The resting intraluminal free Ca2+ concentration ([Ca2+]L) is 25 +/- 4.2 microM (mean +/- SD, n = 68). Exposure to 3 microM inositol 1,4,5-trisphosphate (InsP3) induced periodic oscillations of luminal Ca2+ ([Ca2+]L) of approximately 10 microM amplitude and a period around 8-10 s. The [Ca2+]L oscillations were accompanied by a corresponding oscillatory release of [Ca2+]L to the extraluminal space. Control experiments using ruthenium red (2 microM) and thapsigargin (100 nM) ruled out artifacts derived from the eventual presence of mitochondria or endoplasmic reticulum in the isolated granule preparation. Oscillations of [Ca2+]L and Ca2+ release result from a Ca2+/K+ exchange process whereby bound Ca is displaced from the heparin polyanionic matrix by inflow of K+ into the granular lumen via an apamin-sensitive Ca2+-sensitive K+ channel (ASK(Ca)), whereas Ca2+ release takes place via an InsP3-receptor-Ca2+ (InsP3-R) channel. These results are consistent with previous observations of [Ca2+]L oscillations and release in/from the endoplasmic reticulum and mucin granules, and suggest that a highly conserved common mechanism might be responsible for [Ca2+]L oscillations and quantal periodic Ca2+ release in/from intracellular Ca2+ storage compartments.  相似文献   

7.
In single liver cells, the D-myo-inositol 1,4,5-triphosphate (InsP3)-dependent agonists such as noradrenaline and angiotensin II evoke oscillations in intracellular calcium [Ca2+]i resulting mostly from the periodic release and reuptake of calcium from intracellular stores. In the present work, we have reexamined the effects of these agonists and investigated whether the natural bile acid taurolithocholic acid 3-sulfate (TLC-S), which permeabilizes the endoplasmic reticulum, could initiate oscillations of [Ca2+]i. Oscillations of [Ca2+]i were monitored with the Ca2(+)-dependent K+ permeability in whole-cell voltage-clamped guinea pig liver cells. Our results confirm the presence of two types of oscillations induced by hormones. They could be distinguished by their frequency periods. The fast (type I) had periods ranging from 5 to 12 s and the slow (type II) from 60 to 240 s. They have been respectively attributed to second messenger- and receptor-controlled oscillations, respectively. Our results also show that TLC-S, as noradrenaline and angiotensin II, induced the activation of this Ca(+)-dependent K+ current and was able to reproduce both types of oscillations. The bile acid effect was not blocked by intracellular perfusion of heparin known to inhibit both InsP3 binding and InsP3-evoked Ca2+ release in several tissues. In these conditions, TLC-S only evoked type I oscillations, suggesting that these fluctuations could originate from a mechanism that is independent of InsP3 and is an intrinsic property of internal Ca2+ stores.  相似文献   

8.
Multiple effects of pertussis toxin (PT) on Jurkat T-cells can be distinguished on the basis of their dose-response and their kinetics. High concentrations of PT deliver to cells an activating signal resulting in a rapid rise in [Ca2+]i followed by IL-2 synthesis. This activation is accompanied (within 2 h) by a down-regulation of the CD3/TCR complex from the cell surface. Cells then become refractory towards stimulation by CD3 mAb or PHA. All these effects, referred to as 'mitogenic effects', present the same dose-response curves with an EC50 of 0.5 micrograms/ml. Short term effects (PT-induced Ca2+ movements, down-regulation of CD3/TCR complex and inhibition of PHA and CD3-induced Ca2+ signal) are observed under conditions where no PT-induced ADP-ribosylation can be detected. In contrast, ADP-ribosylation of the 40,000 alpha-subunit of G-proteins requires a sustained (18 h) incubation of intact cells in the presence of low concentration (EC50 = 0.3 ng/ml) of PT. Dose-response curves for PT-dependent ADP-ribosylation and mitogenic effects are separated by three orders of magnitude. Covalent modification of G-protein has no effect on CD3-induced increase in [Ca2+]i and IL-2 synthesis induced by a combination of phorbol ester and either CD3 mAb, PHA or calcium ionophore. These data indicate that transduction of the mitogenic signal does not involve a PT-sensitive G-protein. Furthermore, inhibition of mitogenic signals following PT treatment results from a PT-induced activation leading to a down-regulation of the CD3/T cell receptor complex.  相似文献   

9.
Signal generation during the stimulation of insulin secretion by arginine vasopressin (AVP) was investigated in RINm5F cells. AVP (0.1 microM) caused a biphasic cytosolic Ca2+ ([Ca2+]i) rise, namely a rapid transient marked elevation after stimulation followed by a series of oscillations. In the absence of extracellular Ca2+, the sustained oscillations were abolished, while the initial [Ca2+]i transient was only partly decreased, indicating that the former are due to Ca2+ influx and the latter due mainly to mobilization from internal Ca2+ stores. AVP also evoked a transient depolarization of the average membrane potential. AVP-induced Ca2+ influx during the sustained phase, which was strictly dependent on receptor occupancy, was attenuated by membrane hyperpolarization with diazoxide. However, blockade of Ca2+ channels of the L- or T-type was ineffective. AVP stimulated production of diacylglycerol and inositol phosphates; for the latter both [3H] inositol labeling and mass determinations were performed. A transient increase in Ins(1,4,5)P3 was followed by a marked enhancement of Ins(1,3,4,5)P4 (8-fold) peaking at 15 s and gradually returning to basal values. Ins(1,3,4,6)P4 and Ins(3,4,5,6)P4 exhibited the most long-lasting augmentation (4- and 1.7-fold, respectively), and therefore correlated best with the period of sustained [Ca2+]i oscillations. InsP5 and InsP6 were not elevated. The effects of AVP, including the stimulation of insulin secretion from perifused cells, were obliterated by a V1 receptor antagonist. In conclusion, AVP induces protracted [Ca2+]i elevation in RINm5F cells which is associated with long-lasting increases in InsP4 isomers. The accumulation of InsP4 isomers reflects receptor occupancy and accelerated metabolism of the inositol phosphates. Activation of second messenger-operated Ca2+ channels is not necessarily implicated because of the attenuating effect of membrane hyperpolarization.  相似文献   

10.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP3R) is an endoplasmic reticulum-localized Ca2+ -release channel that controls complex cytoplasmic Ca(2+) signaling in many cell types. At least three InsP3Rs encoded by different genes have been identified in mammalian cells, with different primary sequences, subcellular locations, variable ratios of expression, and heteromultimer formation. To examine regulation of channel gating of the type 3 isoform, recombinant rat type 3 InsP3R (r-InsP3R-3) was expressed in Xenopus oocytes, and single-channel recordings were obtained by patch-clamp electrophysiology of the outer nuclear membrane. Gating of the r-InsP3R-3 exhibited a biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). In the presence of 0.5 mM cytoplasmic free ATP, r-InsP3R-3 gating was inhibited by high [Ca2+]i with features similar to those of the endogenous Xenopus type 1 Ins3R (X-InsP3R-1). Ca2+ inhibition of channel gating had an inhibitory Hill coefficient of approximately 3 and half-maximal inhibiting [Ca2+]i (Kinh) = 39 microM under saturating (10 microM) cytoplasmic InsP3 concentrations ([InsP3]). At [InsP3] < 100 nM, the r-InsP3R-3 became more sensitive to Ca2+ inhibition, with the InsP(3) concentration dependence of Kinh described by a half-maximal [InsP3] of 55 nM and a Hill coefficient of approximately 4. InsP(3) activated the type 3 channel by tuning the efficacy of Ca2+ to inhibit it, by a mechanism similar to that observed for the type 1 isoform. In contrast, the r-InsP3R-3 channel was uniquely distinguished from the X-InsP3R-1 channel by its enhanced Ca2+ sensitivity of activation (half-maximal activating [Ca2+]i of 77 nM instead of 190 nM) and lack of cooperativity between Ca2+ activation sites (activating Hill coefficient of 1 instead of 2). These differences endow the InsP3R-3 with high gain InsP3-induced Ca2+ release and low gain Ca2+ -induced Ca2+ release properties complementary to those of InsP3R-1. Thus, distinct Ca2+ signals may be conferred by complementary Ca2+ activation properties of different InsP3R isoforms.  相似文献   

11.
The inositol 1,4,5-trisphosphate (InsP3) receptor was purified from bovine cerebellum and reconstituted in liposomes composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (1:1) successfully.No effect of Ca2+ concentration on [3H]-InsP3 binding to unreconstituted InsP3 receptor could be observed either at 4℃ or at 25℃,whereas the effect of [Ca2+] on reconstituted InsP3 receptor depended on the temperature.The Ca2+ concentration outside the proteolipsome ([Ca2+]o) had no detectable effect on InsP3 binding to InsP3 receptor at 4℃.In contrast,with increase of [Ca2+]o from 0 to 100 nmol/L at 25℃,the InsP3 binding activity increased gradually.Then the InsP3 binding activity was decreased drastically at higher [Ca2+]o and inhibited entirely at 50 mol/L [Ca2+]o.Conformational studies on intrinsic fluorescence of the reconstituted InsP3 receptor and its quenching by KI and HB indicated that the global conformation of reconstituted InsP3 receptor could not be affected by [Ca2+]o at 4℃.While at 25℃,the effects of 10 m mol/L [Ca2+]o on global,membrane and cytoplasmic conformation of the reconstituted InsP3 receptor were different significantly from that of 100 nmol/L [Ca2+]o.  相似文献   

12.
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.  相似文献   

13.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

14.
The inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R), a Ca2+-release channel localized to the endoplasmic reticulum, plays a critical role in generating complex cytoplasmic Ca2+ signals in many cell types. Three InsP3R isoforms are expressed in different subcellular locations, at variable relative levels with heteromultimer formation in different cell types. A proposed reason for this diversity of InsP3R expression is that the isoforms are differentially inhibited by high cytoplasmic free Ca2+ concentrations ([Ca2+]i), possibly due to their different interactions with calmodulin. Here, we have investigated the possible roles of calmodulin and bath [Ca2+] in mediating high [Ca2+]i inhibition of InsP3R gating by studying single endogenous type 1 InsP3R channels through patch clamp electrophysiology of the outer membrane of isolated Xenopus oocyte nuclei. Neither high concentrations of a calmodulin antagonist nor overexpression of a dominant-negative Ca2+-insensitive mutant calmodulin affected inhibition of gating by high [Ca2+]i. However, a novel, calmodulin-independent regulation of [Ca2+]i inhibition of gating was revealed: whereas channels recorded from nuclei kept in the regular bathing solution with [Ca2+] approximately 400 nM were inhibited by 290 muM [Ca2+]i, exposure of the isolated nuclei to a bath solution with ultra-low [Ca2+] (<5 nM, for approximately 300 s) before the patch-clamp experiments reversibly relieved Ca2+ inhibition, with channel activities observed in [Ca2+]i up to 1.5 mM. Although InsP3 activates gating by relieving high [Ca2+]i inhibition, it was nevertheless still required to activate channels that lacked high [Ca2+]i inhibition. Our observations suggest that high [Ca2+]i inhibition of InsP3R channel gating is not regulated by calmodulin, whereas it can be disrupted by environmental conditions experienced by the channel, raising the possibility that presence or absence of high [Ca2+]i inhibition may not be an immutable property of different InsP3R isoforms. Furthermore, these observations support an allosteric model in which Ca2+ inhibition of the InsP3R is mediated by two Ca2+ binding sites, only one of which is sensitive to InsP3.  相似文献   

15.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an integral membrane protein in the endoplasmic reticulum (ER) which functions as a ligand-gated Ca2+ release channel. InsP3-mediated Ca2+ release modulates the cytoplasmic free Ca2+ concentration ([Ca2+]i), providing a ubiquitous intracellular signal with high temporal and spatial specificity. Precise localization of the InsP3R is believed to be important for providing local [Ca2+] regulation and for ensuring efficient functional coupling between Ca2+ release sites by enabling graded recruitment of channels with increasing stimulus strength in the face of the intrinsically unstable regenerative process of Ca2+-induced Ca2+ release. Highly localized Ca2+ release has been attributed to the ability of the InsP3R channels to cluster and to be localized to discrete areas, suggesting that mechanisms may exist to restrict their movement. Here, we examined the lateral mobility of the type 3 isoform of the InsP3R (InsP3R3) in the ER membrane by performing confocal fluorescence recovery after photobleaching of an InsP3R3 with green fluorescent protein fused to its N terminus. In Chinese hamster ovary and COS-7 cells, the diffusion coefficient D was approximately 4 x 10(-10) cm2/s at room temperature, a value similar to that determined for other ER-localized integral membrane proteins, with a high fraction (approximately 75%) of channels mobile. D was modestly increased at 37 degrees C, and it as well as the mobile fraction were reversibly reduced by ATP depletion. Although disruption of the actin cytoskeleton (latrunculin) was without effect, disruption of microtubules (nocodazole) reduced D by half without affecting the mobile fraction. We conclude that the entire ER is continuous in these cells, with the large majority of InsP3R3 channels free to diffuse throughout it, at rates that are comparable with those measured for other polytopic ER integral membrane proteins. The observed InsP3R3 mobility may be higher than its intrinsic diffusional mobility because of additional ATP- and microtubule-facilitated motility of the channel.  相似文献   

16.
Stimulation of pancreatic acinar cells with acetylcholine (ACh) and cholecystokinin (CCK) results in an elevation of cytosolic calcium ([Ca(2+)](c)) through activation of inositol 1,4,5-trisphosphate receptors (InsP(3)R). The global temporal pattern of the [Ca(2+)](c) changes produced by ACh or CCK stimulation differs significantly. The hypothesis was tested that CCK stimulation results in a protein kinase A (PKA)-mediated phosphorylation of InsP(3)R and this event contributes to the generation of agonist-specific [Ca(2+)](c) signals. Physiological concentrations of CCK evoked phosphorylation of the type III InsP(3)R, which was blocked by pharmacological inhibition of PKA. Imaging of fura-2-loaded acinar cells revealed that the rate of [Ca(2+)](c) rise during CCK-evoked oscillations slows with each subsequent oscillation, consistent with a developing modulation of release, whereas the kinetics of ACh-evoked oscillations remain constant. Stimulation of cells with ACh following activation of PKA resulted in a slowing of the ACh-evoked [Ca(2+)](c) rise, which now resembled a time-matched CCK response. PKA activation also resulted in a slowing of [Ca(2+)](c) increases elicited by photolysis of caged InsP(3). Targeted, PKA-mediated phosphorylation of type III InsP(3)R is involved in a physiological CCK response, as disruption of the targeting of PKA with the peptide HT31 resulted in marked changes in the CCK-evoked [Ca(2+)](c) signal but had no effect on ACh-evoked responses. Stimulation of cells with bombesin, which evokes [Ca(2+)](c) oscillations indistinguishable from those produced by CCK, also results in PKA-mediated phosphorylation of type III InsP(3)R. Thus, we conclude that PKA-mediated phosphorylation of type III InsP(3)R is a general mechanism by which the patterns of [Ca(2+)](c) oscillations are shaped in pancreatic acinar cells.  相似文献   

17.
A rapid rise in the level of cytosolic free calcium ([Ca2+]i) is believed to be one of several early triggering signals in the activation of T lymphocytes by antigen. Although Ca2+ release from intracellular stores and its contribution to Ca2+ signaling in many cell types is well documented, relatively little is known regarding the role and mechanism of Ca2+ entry across the plasma membrane. We have investigated mitogen-triggered Ca2+ signaling in individual cells of the human T-leukemia-derived line, Jurkat, using fura-2 imaging and patch-clamp recording techniques. Phytohemagglutinin (PHA), a mitogenic lectin, induces repetitive [Ca2+]i oscillations in these cells peaking at micromolar levels with a period of 90-120 s. The oscillations depend critically upon Ca2+ influx across the plasma membrane, as they are rapidly terminated by removal of extracellular Ca2+, addition of Ca(2+)-channel blockers such as Ni2+ or Cd2+, or membrane depolarization. Whole-cell and perforated-patch recording methods were combined with fura-2 measurements to identify the mitogen-activated Ca2+ conductance involved in this response. A small, highly selective Ca2+ conductance becomes activated spontaneously in whole-cell recordings and in response to PHA in perforated-patch experiments. This conductance has properties consistent with a role in T-cell activation, including activation by PHA, lack of voltage-dependent gating, inhibition by Ni2+ or Cd2+, and regulation by intracellular Ca2+. Moreover, a tight temporal correlation between oscillations of Ca2+ conductance and [Ca2+]i suggests a role for the membrane Ca2+ conductance in generating [Ca2+]i oscillations in activated T cells.  相似文献   

18.
Fluorescence ratio imaging indicates that immobilized, aspirin-treated platelets, loaded with Fura-2, respond to inositol 1,4,5-trisphosphate- (InsP3)-generating agonists such as thrombin by high-frequency, irregular rises in cytosolic [Ca2+]i with spikes that vary in peak level and peak-to-peak interval. This differs from the regular [Ca2+]i oscillations observed in other, larger cells. We found that the thiol-reactive compounds thimerosal (10 microm) and U73122 (10 microm) evoked similar irregular Ca2+ responses in platelets, but in this case in the absence of InsP3 generation. Thrombin-induced spiking was acutely abolished by inhibiting phospholipase C or elevating intracellular cAMP levels, while spiking with sulfhydryl reagents was only partially blocked by cAMP elevation. Confocal laser scanning microscopy using fluo-3-loaded platelets indicated that, with all agonists or conditions, the irregular spikes were almost instantaneously raised in various regions within a single platelet. When using saponin-permeabilized platelets, we found that InsP3-induced Ca2+ release from stores was stimulated by modest Ca2+ concentrations, pointing to a mechanism of InsP3-dependent Ca2+-induced Ca2+ release (CICR). This process was completely inhibitable by heparin. The Ca2+ release by InsP3, but not the CICR sensor, was negatively regulated by cAMP elevation. Thimerosal treatment did not release Ca2+ from intracellular stores, but markedly potentiated the stimulatory effect of InsP3. In contrast, U73122 caused a heparin/cAMP-insensitive Ca2+ leak from stores that differed from those used by InsP3. Taken together, these results demonstrate that InsP3 receptor channels play a crucial role in the irregular, spiking Ca2+ signal of intact platelets, even when induced by agents such as thimerosal or U73122 which do not stimulate InsP3 formation. The irregular Ca2+ release events appear to be subjected to extensive regulation by: (a) InsP3 level, (b) the potentiating effect of elevated Ca2+ on InsP3 action via CICR, (c) InsP3 channel sensitization by sulfhydryl (thimerosal) modification, (d) InsP3 channel-independent Ca2+ leak with U73122, and (e) down-regulation via cAMP elevation. The observation that individual Ca2+ peaks were generated in various parts of a platelet at similar intervals and amplitudes points to effective cooperation of the various stores in the Ca2+-release process.  相似文献   

19.
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.  相似文献   

20.
The InsP3R Ca(2+)-release channel has biphasic dependence on cytoplasmic free Ca2+ concentration ([Ca2+]i). InsP3 activates gating primarily by reducing high [Ca2+]i inhibition. To determine whether relieving Ca2+ inhibition is sufficient for activation, we examined single-channels in low [Ca2+]i in the absence of InsP3 by patch clamping isolated Xenopus oocyte nuclei. For both endogenous Xenopus type 1 and recombinant rat type 3 InsP3R channels, spontaneous InsP3-independent activities with low open probability Po (approximately 0.03) were observed in [Ca2+]i < 5 nM, whereas none were observed in 25 nM Ca2+. These results establish the half-maximal inhibitory [Ca2+]i in the absence of InsP3 and demonstrate that the channel can be active when all of its ligand-binding sites are unoccupied. In the simplest allosteric model that fits all observations in nuclear patch-clamp studies, the tetrameric channel can adopt six conformations, the equilibria among which are controlled by two inhibitory, one activating Ca(2+)-binding, and one InsP3-binding sites in a manner similar to the Monod-Wyman-Changeux model. InsP3 binding activates gating by affecting the relative affinity for Ca2+ of one of the inhibitory sites in different channel conformations, transforming it into an activating site. Ca2+ inhibition of InsP3-liganded channels is mediated by an InsP3-independent second inhibitory site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号