首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potent inhibitory effect of galanin on basal and pentagastrin-stimulated gastric acid secretion in vivo, and the presence of galanin-containing nerves in gastrointestinal tract and pancreas, suggested that this peptide may regulate the exocrine secretion of the GI system. Male rats were anesthetized with pentobarbital and the dose-dependent inhibitory effects of galanin on basal and stimulated pancreatic protein and amylase secretions were investigated in separate experiments. Galanin was administered intravenously in the following doses: 3, 6, 10, 15 and 20 micrograms/kg/h (0.93, 1.86, 3.1, 4.65 and 6.2 nmol/kg/h), and pancreatic secretions measured. The maximal effective dose of galanin (3.1 nmol/kg/h) on basal pancreatic secretions was found, and was used for evaluating the inhibitory effect of galanin on pancreatic protein and amylase secretions stimulated by bombesin, secretin and cholecystokinin. Galanin potently inhibited basal, bombesin-, secretin- and cholecystokinin-stimulated pancreatic protein and amylase secretion. Inhibitory effect of galanin was dose-dependent and biphasic.  相似文献   

2.
The Ca2+ chelators, EGTA and BAPTA, have been introduced into intact, isolated rat pancreatic acini using a hypotonic swelling method. This resulted in complete inhibition of amylase release, stimulated by carbamylcholine at a submaximal concentration and 82 - 85% inhibition at maximal concentrations. Acini swollen in the absence of Ca2+ chelators showed similar secretory responses to those of unswollen acini. Treatment of unswollen acini with chelators inhibited the maximum response to carbamylcholine by only 23%. The inhibitory effect of intracellular chelators was not due to ATP depletion or a lowering of the total cell Ca2+ content. Thus, these results provide the first direct demonstration that an increase in intracellular Ca2+ concentration is necessary for the stimulation of enzyme release from pancreatic acinar cells.  相似文献   

3.
4.
Rab3 proteins are believed to play an important role in regulated exocytosis and previous work has demonstrated the presence of Rab3D on pancreatic zymogen granules. To further understand the function of Rab3D in acinar cell exocytosis, adenoviral constructs were prepared encoding hemagglutinin-tagged wild type Rab3D and three mutant forms, N135I and T36N (both deficient in guanine nucleotide binding) and Q81L (deficient in GTP hydrolysis), which also expressed enhanced green fluorescent protein driven by a separate promoter. When isolated mouse pancreatic acini were cultured with 5 x 10(6) pfu/ml adenovirus, nearly 100% of acini were infected as visualized by expression of green fluorescent protein. Cultured acini showed a biphasic dose-response to cholecystokinin (CCK); basal amylase secretion was 1.8 +/- 0.3%/30 min, peak release was 7.3 +/- 0.2%/30 min at 30 pm CCK and reduced secretion was observed at higher CCK concentrations. Control beta-galactosidase virus infection had no effect on either basal or CCK-induced secretion in the titer range from 0.5 to 10 x 10(6) pfu/ml. While the expression of Rab3D and Rab3D Q81L had no effect on amylase secretion, Rab3D N135I and T36N functioned as dominant negative mutants and inhibited CCK-induced amylase release by 40-50% at all points on the CCK dose-response curve from 3 to 300 pm. Inhibition was stronger during the first 5 min (71 +/- 5%) than over 30 min (36%+/-5%). Similar inhibition was found using other agonists including bombesin, carbachol, and cAMP. Localization of adenoviral expressed Rab protein showed wild type Rab3D localized to zymogen granules. The two dominant negative mutants did not localize to granules and were primarily in the basolateral region of the cell. Since both dominant negative Rab3D mutants had no effect on intracellular calcium increase induced by CCK, it is unlikely that they acted at receptors or transmembrane signaling. These results suggest that Rab3D plays an important role in regulating the terminal steps of acinar exocytosis and that this effect is greatest on the early phase of amylase release.  相似文献   

5.
Y Chen  M Laburthe  B Amiranoff 《Peptides》1992,13(2):339-341
The ubiquitous neuropeptide, galanin, strongly inhibits adenylate cyclase in rat brain membranes. While basal enzyme activity was not altered, galanin from 10(-11) M to 5 x 10(-7) M decreased forskolin- and VIP-stimulated adenylate cyclase with a half-maximal effect being elicited by 0.7 nM neuropeptide and a maximal 80% inhibition of the enzyme activity. The galanin fragments (2-29) and (1-15) dose-dependently inhibited the forskolin-stimulated adenylate cyclase, while the fragments (3-29) and (10-29) were found inactive. These results indicate that the regulatory action of galanin in the central nervous system involves the coupling of galanin receptors to the inhibition of the adenylate cyclase system.  相似文献   

6.
The primary function of the exocrine pancreas consists of the synthesis and secretion of several digestive enzymes. It is well established that amylase secretion by rat pancreatic tissue or by isolated acinar cells in culture can be stimulated by the cholinergic agonist carbachol. However, the effect of this secretagogue on enzyme synthesis remains unclear. Some studies demonstrated increases in rates of synthesis, whereas others reported increases in secretion with or without decreases in synthesis. We have evaluated changes in pancreatic amylase mRNA and total RNA after a single injection of carbachol and under fasting conditions. Two approaches in molecular morphology were applied on rat pancreatic tissue: in situ hybridization and RNase A-gold. Both revealed decreases in RNA labeling at the level of the rough endoplasmic reticulum (RER) 5 min after stimulation of secretion and after fasting. Gradual recovery was registered 15 and 30 min after stimulation of secretion. Northern blotting confirmed drastic decreases in amylase mRNA 5 min after stimulation and after fasting. The combination of such different approaches has demonstrated drastic decreases in RNA at the RER level, reflecting declines in rates of synthesis at the translational level under all conditions tested.  相似文献   

7.
Compounds with membrane stabilizing activity were studied as to their ability to affect pancreatic amylase release and the steps in the stimulus-secretion coupling process. Chlorpromazine, propranolol, and thymol were all found to inhibit bethanechol-stimulated amylase release and at slightly higher concentrations to induce release regardless of the presence of the secretagogue. This biphasic effect was similar to that found previously for the local anesthetic tetracaine. Release by high concentrations of propranolol and tetracaine was accompained by ultrastructural evidence of cell damage. Membrane stabilizers at concentrations which inhibited amylase release were shown to block bethanechol-induced depolarization and stimulation of 45Ca++ efflux although the drugs alone partially depolarized pancreatic cells. Release of amylase induced by Ca++ introduced by the ionophore A23187 was also abolished. The findings indicate that membrane stabilizers independently inhibit the steps leading to a rise in intracellular Ca++ and the subsequent Ca++-activated amylase release.  相似文献   

8.
PKC is known to be activated by pancreatic secretagogues such as CCK and carbachol and to participate along with calcium in amylase release. Four PKC isoforms, alpha, delta, epsilon, and zeta, have been identified in acinar cells, but which isoforms participate in amylase release are unknown. To identify the responsible isoforms, we used translocation assays, chemical inhibitors, and overexpression of individual isoforms and their dominant-negative variants by means of adenoviral vectors. CCK stimulation caused translocation of PKC-alpha, -delta, and -epsilon, but not -zeta from soluble to membrane fraction. CCK-induced amylase release was inhibited approximately 30% by GF109203X, a broad spectrum PKC inhibitor, and by rottlerin, a PKC-delta inhibitor, but not by G?6976, a PKC-alpha inhibitor, at concentrations from 1 to 5 microM. Neither overexpression of wild-type or dominant-negative PKC-alpha affected CCK-induced amylase release. Overexpression of PKC-delta and -epsilon enhanced amylase release, whereas only dominant-negative PKC-delta inhibited amylase release by 25%. PKC-delta overexpression increased amylase release at all concentrations of CCK, but dominant-negative PKC-delta only inhibited the maximal concentration; both similarly affected carbachol and JMV-180-induced amylase release. Overexpression of both PKC-delta and its dominant-negative variant affected the late but not the early phase of amylase release. GF109203X totally blocked the enhancement of amylase release by PKC-delta but had no further effect in the presence of dominant-negative PKC-delta. These results indicate that PKC-delta is the PKC isoform involved with amylase secretion.  相似文献   

9.
This study examines the influence of ovariectomy and administration of a pharmacologic dose of estradiol on amylase release from isolated-dispersed rat pancreatic acini and cholecystokinin receptors on rat acinar cell membranes. Rats were sham ovariectomized (intact) or ovariectomized (Ovx) and 21 day timed release pellets containing either estradiol (2.5 mg) or vehicle, were implanted subcutaneously. Eighteen days later, pancreatic acini were isolated from rats by collagenase digestion and differential centrifugation. Total cellular amylase, basal and cholecystokinin octapeptide (CCK8) stimulated amylase release and CCK membrane receptors were measured. Acini isolated from estradiol treated Ovx rats had significantly greater total cellular amylase, compared to acini isolated from either intact or Ovx rats. The amplitude of both total stimulated amylase release and percent total stimulated amylase release were significantly greater for acini isolated from vehicle treated Ovx rats, than acini isolated from either intact or estradiol treated Ovx rats. The magnitude of percent total amylase release of acini isolated from estradiol treated Ovx rats was significantly lower than that of acini isolated from intact rats. Cholecystokinin receptor concentration was significantly greater on membranes prepared from vehicle treated Ovx rats, compared to membranes prepared from either intact or estradiol treated Ovx rats. These data indicate that ovariectomy is associated with increased responsiveness of pancreatic acini to CCK stimulation, while chronic estradiol treatment of ovariectomized rats is associated with increased total cellular amylase and decreased acinar cell responsiveness to CCK8. Estrogen mediated alterations in acinar cell amylase content and amylase release may play a role in estrogen related pancreatitis.  相似文献   

10.
An examination of the binding characteristics of a large number of somatostatin analogues with respect to the five known somatostatin receptor subtypes has recently resulted in the discovery of several peptides with some selectivity for types 2, 3, and 4 and little affinity for type 1 or 5 receptor. A panel of these peptides has thus far implicated type 2 receptors in the inhibition of release of pituitary growth hormone and type 4 receptors in inhibiting pancreatic insulin release. In the present article, we have examined the inhibitory effects of the same group of peptides on in vivo rat gastric acid and pancreatic amylase release and binding to rat pancreatic acinar cells. The type 2-selective ligand NC-8–12 was a potent inhibitor of gastric acid release (EC50s in the 1.5 nM region) whereas the type 4-selective ligand, DC-23–99, elicited little response. However, some involvement of type 3 receptors could not be ruled out because the type 3-selective analoueg, DC-25–20, exhibited inhibitory effects at higher dose levels (EC50 > 10 nM). Conversely, the type 4 analogue was a potent inhibitor of amylase release (EC50 1.1 nM) whereas the type 3 analogue had no significant effects at doses tested. DC-23–99 also bound with high affinity to rat acinar cells (EC50 3.8 nM), whereas DC-25-20 exhibited more than 10-fold less affinity. Thus, these two major biological functions of somatostatin appear to be controlled by different receptors and, furthermore, effects on both endocrine and exocrine pancreas appear to be type 4 receptor mediated.  相似文献   

11.
Summary Compounds with membrane stabilizing activity were studied as to their ability to affect pancreatic amylase release and the steps in the stimulus-secretion coupling process. Chlorpromazine, propranolol, and thymol were all found to inhibit bethanechol-stimulated amylase release and at slightly higher concentrations to induce release regardless of the presence of the secretagogue. This biphasic effect was similar to that found previously for the local anesthetic tetracaine. Release by high concentrations of propranolol and tetracaine was accompanied by ultrastructural evidence of cell damage. Membrane stabilizers at concentrations which inhibited amylase release were shown to block bethanechol-induced depolarization and stimulation of45Ca++ efflux although the drugs alone partially depolarized pancreatic cells. Release of amylase induced by Ca++ introduced by the ionophore A23187 was also abolished. These findings indicate that membrane stabilizers independently inhibit the steps leading to a rise in intracellular Ca++ and the subsequent Ca++-activated amylase release.  相似文献   

12.
13.
E K Matthews  Z J Cui 《FEBS letters》1989,256(1-2):29-32
The halogenated fluorescein derivative, rose bengal, upon photon activation, elicits amylase secretion from isolated, perifused pancreatic acini. This effect is due to production of highly reactive singlet delta oxygen which can permeabilize the cell membrane and may also react chemically with secretagogue receptors, or other functional components of the membrane such as the G-proteins. The profile of photodynamically induced amylase secretion is anion-dependent: it becomes biphasic when the chloride ion is substituted by the glutamate ion, an effect attributed to the action of glutamate on the ionic transport systems of the zymogen granule membrane.  相似文献   

14.
1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).  相似文献   

15.
The effects of vinblastine and colchicine on pancreatic acinar cells were studied by use of in vitro mouse pancreatic fragments. Vinblastine inhibited the release of amylase stimulated by bethanechol, caerulein, or ionophore A23187. Inhibition required preincubation with vinblastine,and maximum inhibition was observed after 90 min. Inhibition was relatively irreversible and could not be overcome by a high concentration of stimulant. Inhibition could also be produced by colchicine although longer preincubation was required and inhibition was only partial. Uptake of [3H]vinblastine and [3H]colchicine by pancreatic fragments was measured and found not to be responsible for the slow onset of inhibition by these drugs. In incubated pancreas, microtubules were present primarily in the apical pole of the cell and in association with the Golgi region. Vinblastine, under time and dose conditions that inhibited the release of stimulated amylase, also reduced the number of microtubules. The only other consistent structural effects of vinblastine were the presence of vinblastine- induced crystals and an increased incidence of autophagy. The remainder of cell structure was not affected nor were overall tissue ATP and electrolyte contents or the stimulant-induced increase in 45Ca++ efflux. It is concluded that the antisecretory effects of vinblastine and colchicine are consistent with a microtubular action, but that acinar cell microtubules are more resistant to the drugs than many other cell types.  相似文献   

16.
Somatostatin (SST) inhibits pancreatic endocrine secretion. It is generally accepted that SSTR2 and SSTR5 mediate the inhibition of glucagon and insulin release, respectively. The present study was performed to test the hypothesis that SSTR2, but not SSTR5, mediates SST-induced inhibition of insulin release in hamster beta-cells. Both hamster clonal beta-cells HIT-T15 and pancreatic islets were used to test this hypothesis. Both SST and a nonpeptide SSTR2 agonist L-779,976 (1-100 nM) inhibited insulin release from HIT-T15 and islets in a concentration-dependent manner. In contrast, nonpeptide agonists for SSTR1, 3, 4 and 5 at the highest concentration studied (1 microM) failed to inhibit insulin release. PRL-2903, a peptide SSTR2 antagonist (0.1-1 muicroM), antagonized SST-induced inhibition of insulin release in a concentration-dependent manner. Taken together, we conclude that, in hamster beta-cells, SST inhibits insulin release via SSTR2 but not SSTR5.  相似文献   

17.
We examined the actions of exendin-4, a new peptide isolated from Heloderma suspectum venom, on dispersed acini from rat pancreas. Exendin-4 caused a 3-fold increase in cAMP but did not alter cellular calcium concentration. Exendin-4-induced increases in cAMP were inhibited by an exendin-receptor antagonist, exendin (9-39)NH2, but not by VIP-receptor antagonists. Whereas up to 1 microM exendin-4 alone did not alter amylase release, potentiation of enzyme release was observed when the peptide (greater than 30 pM) was combined with cholecystokinin. Potentiation of amylase release was also observed when exendin-4 was combined with carbamylcholine, bombesin or a calcium ionophore, A23187. These results indicate that stimulation of exendin receptors on rat pancreatic acini causes an increase in cellular cAMP. Although this increase in cAMP alone does not result in amylase release, combination of exendin-4 with agents that increase cell calcium results in potentiation of amylase release.  相似文献   

18.
《Life sciences》1993,52(22):PL251-PL254
Galanin and norepinephrine both act on sensory neurons in the rat spinal cord dorsal horn. We looked for the effects of galanin on the basal and electrically-evoked release of [3H]norepinephrine from slices of the dorsal spinal cord. 0.1 to 1.0 μM reduced the basal efflux by maximal 10 % and the stimulation-evoked release in a concentration-related manner by maximal 27 %. In the presence of 0.1 μM galanin receptor antagonist (M-15) reduction of basal efflux persisted but significant effects on the stimulation-evoked release were no longer observed. The antagonist, given alone, was without effect on the release. Thus galanin can reduce the stimulation-evoked norepinephrine release from spinal cord dorsal horn nerve terminals by an action on galanin receptors, however, the release seems not to be tonically inhibited by galanin.  相似文献   

19.
Radiolabeled amylase and unlabeled pancreatic amylase were infused into pigs in order to determine the plasma half-life of the enzyme. Regardless of the parameter measured (radioactivity, enzyme activity or concentration), the plasma removal curves could be resolved into three components when subjected to tracer analysis. The plasma half-life was estimated to be approximately 3 hr. Through the use of a recently developed radioimmunoassay specific for porcine pancreatic amylase, the plasma concentration of amylase was calculated at 2.4 mug/ml. Knowing the plasma concentration and half-life of amylase we determined the circulatory turnover of the enzyme. Over a 2.4-hr period, 9.6 mug of pancreatic amylase/ml of plasma must re-enter the circulation to maintain the enzyme at constant levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号