首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.

Rationale

During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients.

Methods

We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepRfl/fl) or macrophages and alveolar type II cells (LysM-Cre/Leprfl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity.

Results

The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl /fl mice exhibited improved survival.

Conclusions

Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.  相似文献   

2.

Objectives

This study was designed to evaluate the interaction between aging and obesity on cardiac contractile and intracellular Ca2+ properties.

Methods

Cardiomyocytes from young (4-mo) and aging (12- and 18-mo) male lean and the leptin deficient ob/ob obese mice were treated with leptin (0.5, 1.0 and 50 nM) for 4 hrs in vitro. High fat diet (45% calorie from fat) and the leptin receptor mutant db/db obesity models at young and older age were used for comparison. Cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), intracellular Ca2+ levels and decay. O2 levels were measured by dihydroethidium fluorescence.

Results

Our results revealed reduced survival in ob/ob mice. Aging and obesity reduced PS, ± dL/dt, intracellular Ca2+ rise, prolonged TR90 and intracellular Ca2+ decay, enhanced O2 production and p 47phox expression without an additive effect of the two, with the exception of intracellular Ca2+ rise. Western blot analysis exhibited reduced Ob-R expression and STAT-3 phosphorylation in both young and aging ob/ob mice, which was restored by leptin. Aging and obesity reduced phosphorylation of Akt, eNOS and p38 while promoting pJNK and pIκB. Low levels of leptin reconciled contractile, intracellular Ca2+ and cell signaling defects as well as O2 production and p 47phox upregulation in young but not aging ob/ob mice. High level of leptin (50 nM) compromised contractile and intracellular Ca2+ response as well as O2 production and stress signaling in all groups. High fat diet-induced and db/db obesity displayed somewhat comparable aging-induced mechanical but not leptin response.

Conclusions

Taken together, our data suggest that aging and obesity compromise cardiac contractile function possibly via phosphorylation of Akt, eNOS and stress signaling-associated O2 release.  相似文献   

3.

Objective

To evaluate the association of the BRAFV600E mutation with sonographic features and clinicopathologic characteristics in a large population with conventional papillary thyroid carcinoma (PTC).

Methods

We retrospectively reviewed the sonographic features, clinicopathologic characteristics, and presence of the BRAFV600E mutation in 688 patients who underwent thyroidectomy for conventional PTC between January and July 2010 at a single institution. The incidence of the BRAFV600E mutation was calculated. The sonographic features and clinicopathologic characteristics were compared between BRAF-positive and BRAF-negative patients. BRAF-positive patients were subdivided into those with papillary thyroid microcarcinoma (the PTMC group) and those with PTC larger than 10 mm (the PTC>10 mm group), and their sonographic features were compared.

Results

The BRAFV600E mutation was detected in 69.2% of patients (476 of 688). Sonographic features were not significantly different between BRAF-positive and BRAF-negative PTC, nor between PTMC and PTC>10 mm groups. The BRAFV600E mutation was associated with male sex (P = 0.028), large tumor size, extrathyroidal extension, central and lateral lymph node metastasis, and advanced tumor stage (P<0.0001).

Conclusion

The BRAFV600E mutation was significantly associated with several poor clinicopathologic characteristics, but was not associated with sonographic features, regardless of tumor size. We recommend that patients with a thyroid nodule with any suspicious sonographic feature undergo preoperative BRAFV600E testing for risk stratification and to guide the initial surgical approach in PTC.  相似文献   

4.

Background

We evaluated the usefulness of follow-up BRAFV600E mutation analysis using ultrasonography-guided fine-needle aspiration (US-FNA) in diagnosis of thyroid nodules showing negative BRAFV600E mutation on prior analysis.

Methodology/Principal Finding

A total of 49 patients (men: 6, women: 43, mean age: 50.4 years) with 49 thyroid nodules were included. Patients had undergone initial and follow-up US-FNA and subsequent BRAFV600E mutation analysis from US-FNA aspirates. All patients had negative results on initial BRAFV600E mutation analysis. Clinicopathologic findings, US assessment, and BRAFV600E mutation results were analyzed according to the final pathology. Of the 49 nodules, 12 (24.5%) were malignant and 37 (75.5%) were benign. Seven (58.3%) of the 12 malignant nodules were positive for BRAFV600E mutation on follow-up, all showing suspicious US features. Initial US-FNA cytology of the 7 nodules were non-diagnostic (n = 2), benign (n = 2), or atypia (n = 3), while follow-up were benign (n = 1), indeterminate (n = 1), suspicious for malignancy (n = 4), and malignancy (n = 1).

Conclusions/Significance

Follow-up BRAFV600E mutation analysis may be helpful in the diagnosis of selected thyroid nodules negative for BRAFV600E mutation on initial analysis, which are assessed as suspicious malignant on US, diagnosed as non-diagnostic, benign or atypia on follow-up US-FNA.  相似文献   

5.

Background

Hyperhomocysteinemia is regarded as a risk factor for cardiovascular diseases, diabetes and obesity. Manifestation of these chronic metabolic disorders starts in early life marked by increase in body mass index (BMI). We hypothesized that perturbations in homocysteine metabolism in early life could be a link between childhood obesity and adult metabolic disorders. Thus here we investigated association of common variants from homocysteine metabolism pathway genes with obesity in 3,168 urban Indian children.

Methodology/Principal Findings

We genotyped 90 common variants from 18 genes in 1,325 children comprising of 862 normal-weight (NW) and 463 over-weight/obese (OW/OB) children in stage 1. The top signal obtained was replicated in an independent sample set of 1843 children (1,399 NW and 444 OW/OB) in stage 2. Stage 1 association analysis revealed association between seven variants and childhood obesity at P<0.05, but association of only rs2796749 in AMD1 [OR = 1.41, P = 1.5×10-4] remained significant after multiple testing correction. Association of rs2796749 with childhood obesity was validated in stage 2 [OR = 1.28, P = 4.2×10-3] and meta-analysis [OR = 1.35, P = 1.9×10-6]. AMD1 variant rs2796749 was also associated with quantitative measures of adiposity and plasma leptin levels that was also replicated and corroborated in combined analysis.

Conclusions/Significance

Our study provides first evidence for the association of AMD1 variant with obesity and plasma leptin levels in children. Further studies to confirm this association, its functional significance and mechanism of action need to be undertaken.  相似文献   

6.

Background

Lipids are known to play crucial roles in the development of life-style related risk factors such as obesity, dyslipoproteinemia, hypertension and diabetes. The first selective cannabinoid-1 receptor blocker rimonabant, an anorectic anti-obesity drug, was frequently used in conjunction with diet and exercise for patients with a body mass index greater than 30 kg/m2 with associated risk factors such as type II diabetes and dyslipidaemia in the past. Less is known about the impact of this drug on the regulation of lipid metabolism in plasma and liver in the early stage of obesity.

Methodology/Principal Findings

We designed a four-week parallel controlled intervention on apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP) transgenic mice with mild overweight and hypercholesterolemia. A liquid chromatography–linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric approach was employed to investigate plasma and liver lipid responses to the rimonabant intervention. Rimonabant was found to induce a significant body weight loss (9.4%, p<0.05) and a significant plasma total cholesterol reduction (24%, p<0.05). Six plasma and three liver lipids in ApoE*3Leiden.CETP transgenic mice were detected to most significantly respond to rimonabant treatment. Distinct lipid patterns between the mice were observed for both plasma and liver samples in rimonabant treatment vs. non-treated controls. This study successfully applied, for the first time, systems biology based lipidomics approaches to evaluate treatment effects of rimonabant in the early stage of obesity.

Conclusion

The effects of rimonabant on lipid metabolism and body weight reduction in the early stage obesity were shown to be moderate in ApoE*3Leiden.CETP mice on high-fat diet.  相似文献   

7.

Background

Leptin is an adipocyte-derived hormone that plays a critical role in energy homeostasis and lipid metabolism. Overnutrition-associated obesity is known to be accompanied by hyperleptinemia. However, the physiological actions of leptin in the metabolic responses to high-fat diet (HFD) intake remain to be completely elucidated. Here we characterized the metabolic features of mice fed high-fat diets and investigated the impact of leptin upon the lipogenic program which was found to be suppressed by HFD feeding through a proteomics approach.

Results

When maintained on two types of high-fat diets for up to 16 weeks, mice with a higher fat intake exhibited increased body fat accumulation at a greater pace, developing more severely impaired glucose tolerance. Notably, HFD feeding at 4 weeks elicited the onset of marked hyperleptinemia, prior to the occurrence of apparent insulin resistance and hyperinsulinemia. Proteomic analysis revealed dramatically decreased expression of lipogenic enzymes in the white adipose tissue (WAT) from HFD-fed mice, including ATP-citrate lyase (ACL) and fatty acid synthase (FAS). The expression of ACL and FAS in the liver was similarly suppressed in response to HFD feeding. By contrast, HFD-induced downregulation of hepatic ACL and FAS was significantly attenuated in leptin receptor-deficient db/db mice. Furthermore, in the liver and WAT of wild type animals, intraperitoneal leptin administration was able to directly suppress the expression of these two lipogenic enzymes, accompanied by reduced triglyceride levels both in the liver and serum.

Conclusions

These results suggest that leptin contributes to the metabolic responses in adaptation to overnutrition through suppressing the expression of lipogenic enzymes, and that the lipogenic pathway represents a key targeted peripheral component in exerting leptin''s liporegulatory actions.  相似文献   

8.

Objective

Leptin receptors are abundant in human skeletal muscle, but the role of leptin in muscle growth, development and aging is not well understood. Here we utilized a novel mouse model lacking all functional leptin receptor isoforms (POUND mouse, Leprdb/lb) to determine the role of leptin in skeletal muscle.

Methods and Findings

Skeletal muscle mass and fiber diameters were examined in POUND mice, and primary myoblast cultures were used to determine the effects of altered leptin signaling on myoblast proliferation and differentiation. ELISA assays, integrated pathway analysis of mRNA microarrays, and reverse phase protein analysis were performed to identify signaling pathways impacted by leptin receptor deficiency. Results show that skeletal muscle mass and fiber diameter are reduced 30–40% in POUND mice relative to wild-type controls. Primary myoblast cultures demonstrate decreased proliferation and decreased expression of both MyoD and myogenin in POUND mice compared to normal mice. Leptin treatment increased proliferation in primary myoblasts from muscles of both adult (12 months) and aged (24 months) wild-type mice, and leptin increased expression of MyoD and myogenin in aged primary myoblasts. ELISA assays and protein arrays revealed altered expression of molecules associated with the IGF-1/Akt and MAPK/MEK signaling pathways in muscle from the hindlimbs of mice lacking functional leptin receptors.

Conclusion

These data support the hypothesis that the adipokine leptin is a key factor important for the regulation of skeletal muscle mass, and that leptin can act directly on its receptors in peripheral tissues to regulate cell proliferation and differentiation.  相似文献   

9.

Background

Neuronatin (NNAT) is an endoplasmic reticulum proteolipid implicated in intracellular signalling. Nnat is highly-expressed in the hypothalamus, where it is acutely regulated by nutrients and leptin. Nnat pre-mRNA is differentially spliced to create Nnat-α and -β isoforms. Genetic variation of NNAT is associated with severe obesity. Currently, little is known about the long-term regulation of Nnat.

Methods

Expression of Nnat isoforms were examined in the hypothalamus of mice in response to acute fast/feed, chronic caloric restriction, diet-induced obesity and modified gastric bypass surgery. Nnat expression was assessed in the central nervous system and gastrointestinal tissues. RTqPCR was used to determine isoform-specific expression of Nnat mRNA.

Results

Hypothalamic expression of both Nnat isoforms was comparably decreased by overnight and 24-h fasting. Nnat expression was unaltered in diet-induced obesity, or subsequent switch to a calorie restricted diet. Nnat isoforms showed differential expression in the hypothalamus but not brainstem after bypass surgery. Hypothalamic Nnat-β expression was significantly reduced after bypass compared with sham surgery (P = 0.003), and was positively correlated with post-operative weight-loss (R2 = 0.38, P = 0.01). In contrast, Nnat-α expression was not suppressed after bypass surgery (P = 0.19), and expression did not correlate with reduction in weight after surgery (R2 = 0.06, P = 0.34). Hypothalamic expression of Nnat-β correlated weakly with circulating leptin, but neither isoform correlated with fasting gut hormone levels post- surgery. Nnat expression was detected in brainstem, brown-adipose tissue, stomach and small intestine.

Conclusions

Nnat expression in hypothalamus is regulated by short-term nutrient availability, but unaltered by diet-induced obesity or calorie restriction. While Nnat isoforms in the hypothalamus are co-ordinately regulated by acute nutrient supply, after modified gastric bypass surgery Nnat isoforms show differential expression. These results raise the possibility that in the radically altered nutrient and hormonal milieu created by bypass surgery, resultant differential splicing of Nnat pre-mRNA may contribute to weight-loss.  相似文献   

10.

Background

A recent study of obesity in Swedish men found that polymorphisms in the type 3 adenylyl cyclase (AC3) are associated with obesity, suggesting the interesting possibility that AC3 may play a role in weight control. Therefore, we examined the weight of AC3 mice over an extended period of time.

Methodology/Principal Findings

We discovered that AC3−/− mice become obese as they age. Adult male AC3−/− mice are about 40% heavier than wild type male mice while female AC3−/− are 70% heavier. The additional weight of AC3−/− mice is due to increased fat mass and larger adipocytes. Before the onset of obesity, young AC3−/− mice exhibit reduced physical activity, increased food consumption, and leptin insensitivity. Surprisingly, the obesity of AC3−/− mice is not due to a loss of AC3 from white adipose and a decrease in lipolysis.

Conclusions/Significance

We conclude that mice lacking AC3 exhibit obesity that is apparently caused by low locomotor activity, hyperphagia, and leptin insensitivity. The presence of AC3 in primary cilia of neurons of the hypothalamus suggests that cAMP signals generated by AC3 in the hypothalamus may play a critical role in regulation of body weight.  相似文献   

11.

Introduction

Several studies have reported a high frequency of papillary thyroid cancer (PTC) in patients with acromegaly. The aim of this study was to determine the prevalence and predictors of thyroid cancer in patients with acromegaly and to investigate the frequency of the BRAF V600E mutation in PTC patients with and without acromegaly.

Materials and Methods

We conducted a retrospective study of 60 patients with acromegaly. Thyroid ultrasonography (US) and US-guided fine needle aspiration were performed on nodules with sonographic features of malignancy. We selected 16 patients with non-acromegalic PTC as a control group. The BRAF V600E mutation was analyzed in paraffin-embedded surgical specimens of PTC by real-time polymerase chain reaction, and tumor specimens from patients with PTC were stained immunohistochemically with an antibody against insulin-like growth factor-1 receptor β (IGF-1Rβ).

Results

Thyroid cancer was found in 15 (25.0%) patients. No differences in age, sex, initial growth hormone (GH) and IGF-1 percentage of the upper limit of normal values or treatment modalities were observed between patients with and without PTC. Acromegaly was active in 12 of 15 patients at the time of PTC diagnosis; uncontrolled acromegaly had a significantly higher frequency in the PTC group (60%) than in the non-PTC group (28.9%) (p = 0.030). The BRAF V600E mutation was present in only 9.1% (1/11) of PTC patients with acromegaly, although 62.5% (10/16) of control patients with PTC had the mutation (p = 0.007). IGF-1Rβ immunostaining showed moderate-to-strong staining in all malignant PTC cells in patients with and without acromegaly. Significantly less staining for IGF-1Rβ was observed in normal adjacent thyroid tissues of PTC patients with acromegaly compared with those without (p = 0.014).

Conclusion

The prevalence of PTC in acromegalic patients was high (25%). An uncontrolled hyperactive GH-IGF-1 axis may play a dominant role in the development of PTC rather than the BRAF V600E mutation in patients with acromegaly.  相似文献   

12.

Background

Soluble leptin receptor (OBRe), one of several leptin receptor isoforms, is the only bona fide leptin binding protein in plasma. Our earlier studies demonstrated that OBRe modulates leptin levels in circulation. Both clinical and in vitro studies have shown that OBRe expression is inversely correlated to body weight and leptin levels. However, it is not clear whether OBRe plays an active role, either in collaboration with leptin or independently, in the maintenance of body weight.

Methodology/Principal Findings

To investigate the function of OBRe in the regulation of energy homeostasis, we generated transgenic mice that express OBRe under the control of human serum amyloid P (hSAP) component gene promoter. The transgene led to approximately doubling of OBRe in circulation in the transgenic mice than in wild type control mice. Transgenic mice exhibited lower body weight at 4 weeks of age, and slower rate of weight gain when compared with control mice. Furthermore, transgenic mice had lower body fat content. Indirect calorimetry revealed that transgenic mice had reduced food intake, increased basal metabolic rate, and increased lipid oxidation, which could account for the differences in body weight and body fat content. Transgenic mice also showed higher total circulating leptin, with the majority of it being in the bound form, while the amount of free leptin is comparable between transgenic and control mice.

Conclusions

These results are consistent with the role of OBRe as a leptin binding protein in regulating leptin''s bioavailability and activity.  相似文献   

13.

Background

Hygiene hypothesis demonstrates that the lack of microbial exposure would promote the development of allergic airway disease (AAD). Therefore, the gut microbiota, including Escherichia coli (E. coli), would probably offer a potential strategy for AAD.

Objective

To investigate whether E. coli infection is able to suppress the induction of AAD and to elucidate the underlying mechanisms.

Methods

Nonpathogenic E. coli ATCC 25922 was infected by gavage before AAD phase in three patterns: 108 or 106 CFU in neonates or 108 CFU in adults. Then mice were sensitized and challenged with ovalbumin (OVA) to induce allergic inflammation in both the upper and lower airways. Hallmarks of AAD, in terms of eosinophil infiltration and goblet cell metaplasia in subepithelial mucosa, Th2 skewing of the immune response, and levels of T regulate cells (Tregs), were examined by histological analysis, ELISA, and flow cytometry, respectively.

Results

E. coli, especially neonatally infected with an optimal dose, attenuated allergic responses, including a decrease in nasal rubbing and sneezing, a reduction in eosinophil inflammation and goblet cell metaplasia in subepithelial mucosa, decreased serum levels of OVA-specific IgE, and reduced Th2 (IL-4) cytokines. In contrast, this effect came with an increase of Th1 (IFN-r and IL-2) cytokines, and an enhancement of IL-10-secreting Tregs in paratracheal lymph nodes (PTLN).

Conclusion

E. coli suppresses allergic responses in mice, probably via a shift from Th1 to Th2 and/or induction of Tregs. Moreover, this infection is age- and dose-dependent, which may open up novel possibilities for new therapeutic interventions.  相似文献   

14.
15.

Objective

Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice.

Design and Methods

We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500), reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO) mice.

Results

The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice.

Conclusions

Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.  相似文献   

16.
17.
18.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

19.
Ma Y  Wang W  Zhang J  Lu Y  Wu W  Yan H  Wang Y 《PloS one》2012,7(4):e35835

Background

Mice deficient in the LDL receptor (Ldlr −/− mice) have been widely used as a model to mimic human atherosclerosis. However, the time-course of atherosclerotic lesion development and distribution of lesions at specific time-points are yet to be established. The current study sought to determine the progression and distribution of lesions in Ldlr −/− mice.

Methodology/Principal Findings

Ldlr-deficient mice fed regular chow or a high-fat (HF) diet for 0.5 to 12 months were analyzed for atherosclerotic lesions with en face and cross-sectional imaging. Mice displayed significant individual differences in lesion development when fed a chow diet, whereas those on a HF diet developed lesions in a time-dependent and site-selective manner. Specifically, mice subjected to the HF diet showed slight atherosclerotic lesions distributed exclusively in the aortic roots or innominate artery before 3 months. Lesions extended to the thoracic aorta at 6 months and abdominal aorta at 9 months. Cross-sectional analysis revealed the presence of advanced lesions in the aortic sinus after 3 months in the group on the HF diet and in the innominate artery at 6 to 9 months. The HF diet additionally resulted in increased total cholesterol, LDL, glucose, and HBA1c levels, along with the complication of obesity.

Conclusions/Significance

Ldlr-deficient mice on the HF diet tend to develop site-selective and size-specific atherosclerotic lesions over time. The current study should provide information on diet induction or drug intervention times and facilitate estimation of the appropriate locations of atherosclerotic lesions in Ldlr −/− mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号