首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sugar beet growers in Europe are more often confronted with an unsatisfactory control of Chenopodium album L. (fat-hen), possibly due to the presence of a triazinone resistant biotype. So far, two mutations on the psbA-gene, i.e. Ser264-Gly and Ala251-Val, are known to cause resistance in C. album to the photosystem II-inhibiting triazinones metamitron, a key herbicide in sugar beet, and metribuzin. The Ser264-Gly biotype, cross-resistant to many other photosystem II-inhibitors like the triazines atrazine and terbuthylazine, is most common. The second resistant C. album biotype, recorded in Sweden, is highly resistant to triazinones but only slightly cross-resistant to terbuthylazine. Since farmers should adapt their weed control strategy when a resistant biotype is present, a quick and cheap detection method is needed. Therefore, through trial and error, a protocol for detection with chlorophyll fluorescence measurements was developed and put to the test. First, C. album leaves were incubated in herbicide solution (i.e. 0 microM, 25 microM metribuzin, 200 microM metamitron or 25 microM terbuthylazine) during three hours under natural light. After 30 minutes of dark adaptation, photosynthesis yield was measured with Pocket PEA (Hansatech Instruments). In Leaves from sensitive C. album, herbicide treatment reduces photosynthesis yield due to inhibition of photosynthesis at photosystem II. This results in a difference of photosynthesis yield between the untreated control and herbicide treatment. Based on the relative photosynthesis yield (as a percentage of untreated), a classification rule was formulated: C. album is classified as sensitive when its relative photosynthesis yield is less than 90%, otherwise it is resistant. While metribuzin, and to a lesser extent, metamitron treatment allowed a quick detection of triazinone resistant C. album, terbuthylazine treatment was able to distinguish the Ser264-Gly from the Ala251-Val biotype. As a final test, 265 plants were classified with the protocol. Simultaneously, a CLeaved Amplified Polymorphic Sequence (CAPS)-analysis was conducted on the same plants to verify the presence of the Ser264-Gly mutation. Only one mismatch was found when results of both detection methods were compared. The test results illustrate that this protocol provides a reliable, quick and cheap alternative for DNA-analysis and bio-assays to detect the triazinone resistant C. album biotypes.  相似文献   

2.
Metamitron is a key herbicide in modern low rate weed control programs in sugar beet. Fat hen (Chenopodium album, CHEAL) is a common, highly competitive, weed in sugar beet and one of the targets of metamitron. Recently, unsatisfactory control of fat hen has been reported in several sugar beet fields situated in various regions in Belgium. Weather conditions as well as the mere fact of using low rate systems have been blamed for these poor performances. To address the question "Is the recently recorded poor control of C. album due to decreased sensitivity to metamitron", greenhouse bioassays were carried out. A first experiment was conducted applying metamitron (0, 350, 700 and 1,400 g ai/ha) postemergence to three "suspected" C. album populations originating from sugar beet fields with unsatisfactory control by standard metamitron based treatment schemes ('Ligne', 'Outgaarden' and 'Boutersem I' respectively) and to one sensitive population originating from an untreated garden site ('Gent'). In a second experiment seven population, five "suspected" fat hen populations from sugar beet fields ('Boutersem I', 'Boutersem II', 'Postel', 'Vissenaken' and 'Kortessem' respectively), one sensitive reference population 'Herbiseed' and one atrazine-resistant reference population 'ME.85.01', were submitted to metamitron (0, 1, 2 and 4 mg ai/kg air-dry soil) and atrazine (1.5 mg ai/kg air-dry soil) preplant incorporated. All "suspected" C. album populations displayed a significantly lower sensitivity to metamitron compared to the sensitive populations ('Gent' and 'Herbiseed') that never had been exposed to this herbicide. As target site cross-resistance of atrazine-resistant C. album, selected by atrazine in maize, to metamitron has been known for a long time, cross-resistance of C. album populations in sugar beet grown on fields with "maize - atrazine" containing rotations might be expected to appear. The outcome of the experiment with atrazine preplant incorporated was the confirmation of resistance in all "suspected" populations ('Boutersem I', 'Boutersem II', 'Postel', 'Vissenaken' and 'Kortessem'). However, some "suspected" populations came from fields with no background of cropping with maize and use of atrazine. So, the question remains whether these triazine-resistant C. album had been imported, e.g. with slurry, or the rather unexpected possibility that metamitron itself did select for metamitron-resistant biotypes bearing cross-resistance to atrazine, had become reality.  相似文献   

3.
Molecular markers can provide valuable information on the spread of resistant weed biotypes. In particular, tracing local spread of resistant weed patches will give details on the importance of seed migration with machinery, manure, wind or birds. This study investigated the local spread of metamitron resistant Chenopodium album L. patches in the southwest region of the province West-Flanders (Belgium). During the summer of 2009, leaf and seed samples were harvested in 27 patches, distributed over 10 sugar beet fields and 1 maize field. The fields were grouped in four local clusters. Each cluster corresponded with the farmer who cultivated these fields. A cleaved amplified polymorphic sequence (CAPS) procedure identified the Ser264 to Gly mutation in the D1 protein, endowing resistance to metamitron, a key herbicide applied in sugar beet. The majority of the sampled plants within a patch (97% on average) carried this mutation. Amplified fragment length polymorphism (AFLP) analysis was performed with 4 primer pairs and yielded 270 molecular markers, polymorphic for the whole dataset (303 samples). Analysis of molecular variance revealed that a significant part of the genetic variability was attributed to variation among the four farmer locations (12 %) and variation among Chenopodium album patches within the farmer locations (14%). In addition, Mantel tests revealed a positive correlation between genetic distances (linearised phipt between pairs of patches) and geographic distances (Mantel-coefficient significant at p = 0.002), suggesting isolation-by-distance. In one field, a decreased genetic diversity and strong genetic relationships between all the patches in this field supported the hypothesis of a recent introduction of resistant biotypes. Furthermore, genetic similarity between patches from different fields from the same farmer and from different farmers indicated that seed transport between neighbouring fields is likely to have an important impact on the spread of metamitron resistant biotypes.  相似文献   

4.
In sugar beet production, weed control is one of the most important and most expensive practices to ensure yield. Since glyphosate-resistant sugar beets are not yet approved for cultivation in the EU, little commercial experience exists with these sugar beets in Europe. Experimental field trials were conducted at five environments (Germany, Poland, 2010, 2011) to compare the effects of glyphosate with the effects of conventional weed control programs on the development of weeds, weed control efficiency and yield. The results show that the glyphosate weed control programs compared to the conventional methods decreased not only the number of herbicide applications but equally in magnitude decreased the dosage of active ingredients. The results also showed effective weed control with glyphosate when the weed covering was greater and sugar beets had a later growth stage of four true leaves. Glyphosate-resistant sugar beets applied with the glyphosate herbicide two or three times had an increase in white sugar yield from 4 to 18 % in comparison to the high dosage conventional herbicide systems. In summary, under glyphosate management sugar beets can positively contribute to the increasingly demanding requirements regarding efficient sugar beet cultivation and to the demands by society and politics to reduce the use of chemical plant protection products in the environment.  相似文献   

5.
Pollen dispersal in sugar beet production fields   总被引:1,自引:0,他引:1  
Pollen-mediated gene flow has important implications for biodiversity conservation and for breeders and farmers’ activities. In sugar beet production fields, a few sugar beet bolters can produce pollen as well as be fertilized by wild and weed beet. Since the crop, the wild beets, and the weed beets are the same species and intercross freely, the question of pollen flow is an important issue to determine the potential dispersal of transgenes from field to field and to wild habitats. We report here an experiment to describe pollen dispersal from a small herbicide-resistant sugar beet source towards male sterile target plants located along radiating lines up to 1,200 m away. Individual dispersal functions were inferred from statistical analyses and compared. Pollen limitation, as expected in root-production fields, was confirmed at all the distances from the pollen source. The number of resistant seeds produced by bait plants best fitted a fat-tailed probability distribution curve of pollen grains (power–law) dependent on the distance from the pollen source. A literature survey confirmed that power–law function could fit in most cases. The b coefficient was lower than 2. The number of fertilized flowers by background (herbicide-susceptible) pollen grains was uniform across the whole field. Airborne pollen had a fertilization impact equivalent to that of one adjacent bolter. The individual dispersal function from different pollen sources can be integrated to provide the pollen cloud composition for a given target plant, thus allowing modeling of gene flow in a field, inter-fields in a small region, and also in seed-production area. Long-distance pollen flow is not negligible and could play an important role in rapid transgene dispersal from crop to wild and weed beets in the landscape. The removing of any bolting, herbicide-resistant sugar beet should be compulsory to prevent the occurrence of herbicide-resistant weed beet, thus preventing gene flow to wild populations and preserving the sustainable utility of the resistant varieties. Whether such a goal is attainable remains an open question and certainly would be worth a large scale experimental study.  相似文献   

6.

In the years 1997 and 1998 effects of weed on the sexual indices of spiders (Araneae) were carried out during field tests with transgenic, herbicide tolerant sugar beet and maize crops. Because of the tolerance of the plants and the possible late application, different weed cover was determined in treatments. Catching was done with pitfall traps. Conventional fields of the same crops were used with a minimum distance of 500m from the testing site. With exception of O. apicatus (Blackwall) the catching of the males were higher than that of the females and the juveniles. No indirect effects of weed couldn't be determined on the species with exception of P. microphthalmum (O.P.-Cambridge) in both cultures maize and sugar beet.  相似文献   

7.
The germination ecology of Ambrosia artemisiifolia and A. trifida glyphosate susceptible biotypes sampled in marginal areas, was compared with that of the same species but different biotypes suspected of glyphosate resistance, common and giant ragweed, respectively. The suspected resistant biotypes were sampled in Roundup Ready® soybean fields. Within each weed species, the seeds of the biotype sampled in marginal area were significantly bigger and heavier than those of the biotype sampled in the soybean fields. A. artemisiifolia biotypes exhibited a similar dormancy and germination, while differences between A. trifida biotypes were observed. A. artemisiifolia biotypes showed similar threshold temperature for germination, whereas, the threshold temperature of the susceptible A. trifida biotype was half as compared to that of the resistant A. trifida biotype. No significant differences in emergence as a function of sowing depth were observed between susceptible A. artemisiifolia and suspected resistant A. trifida biotype, while at a six-cm seedling depth the emergence of the A. artemisiifolia susceptible biotype was 2.5 times higher than that of the A. trifida suspected resistant biotype. This study identified important differences in seed germination between herbicide resistant and susceptible biotypes and relates this information to the ecology of species adapted to Roundup Ready® fields. Information obtained in this study supports sustainable management strategies, with continued use of glyphosate as a possibility.  相似文献   

8.
Reciprocal gene exchange between cultivated sugar beet and wild beets in seed production areas is probably the reason for the occurence of weed beets in sugar beet production fields. Therefore, when releasing transgenic sugar beet plants into the environment, gene transfer to wild beets ( Beta vulgaris ssp. maritima ) has to be considered. In this study the transfer of BNYVV- (beet necrotic yellow vein virus) resistance and herbicide-tolerance genes from two transgenic sugar beet lines that were released in field experiments in 1993 and 1994 in Germany to different wild beet accessions was investigated. In order to evaluate the consequences of outcrossing, manual pollinations of emasculated wild beet plants with homozygous transgenic sugar beet plants were performed. In the resulting hybrids the transgenes were stably inherited according to Mendelian law. Gene expression in leaves and roots of the hybrids was in the same range as in the original transgenic sugar beet plants. Moreover, it was found that in one of the wild beet accessions, transfer and expression of the BNYVV resistance gene did considerably increase the level of virus resistance.  相似文献   

9.
The origins of weed beet   总被引:2,自引:0,他引:2  
Samples of weed beet were collected from two fields in Norfolk, one in which they had been present for several years and could have evolved from normal sugar beet varieties, and another in which the weed beet were thought to have arisen more recently, through contamination of a monogerm variety. The samples were grown to maturity and used as mother plants in test crosses with monogerm O-type (non-restorer lines. Observations on the mother plants and on the progenies of the test crosses, with respect to the occurrence of the monogerm gene and of cytoplasmic male sterility, were consistent with the hypothesis that weed beet can arise by evolution from bolting plants in uncontaminated seet lots, as well as from seed lots that have been contaminated with annual forms of Beta vulgaris. This conclusion is important in relation to the need for implementing agronomic control measures for weed beet, as well as for eliminating the risk of releasing contaminated seed lots.  相似文献   

10.
Effects of increasing weed-beet density on sugar-beet yield and quality   总被引:1,自引:0,他引:1  
Weed beets are an increasing problem in many sugar-beet crops in many countries. At present about one sugar-beet field in four in England is infested with weed-beet seed. Control in other crops can be achieved using selective herbicides but in sugar beet the weed beets, many of which are of annual habit, are not easily controlled and often compete with the crop. Experiments were done to quantify the yield loss caused by weed beet in sugar-beet crops. Transects were laid out across three fields in 1985 and 1986 and plots located thereon to include the range of weed-beet densities found in the field. Weed beet did not affect the concentration of sugar (sucrose), potassium, sodium, α amino nitrogen or invert sugar in the crop beets. Root and sugar yields were progressively reduced by increasing densities of weed beet. A rectangular hyperbola described the data slightly better than an asymptotic model. There was no indication of a threshold density of weed beet below which there was no yield loss, which averaged 11.7% for each weed beet plant/m2. This corresponds to an average 0.6% sugar yield loss for each 1% of bolted weed beet in the root crop up to 100%, which is similar to the reported losses resulting from bolters in the root crop.  相似文献   

11.
Gene flow is a crucial parameter that can affect the organization of genetic diversity in plant species. It has important implications in terms of conservation of genetic resources and of gene exchanges between crop to wild relatives and within crop species complex. In the Beta vulgaris complex, hybridization between crop and wild beets in seed production areas is well documented and the role of the ensuing hybrids, weed beets, as bridges towards wild forms in sugar beet production areas have been shown. Indeed, in contrast to cultivated beets that are bi-annual, weed beets can bolt, flower and reproduce in the same crop season. Nonetheless, the extent of pollen gene dispersal through weedy lineages remains unknown. In this study, the focus is directed towards weed-to-weed gene flow, and we report the results of a pollen-dispersal analysis within an agricultural landscape composed of five sugar beet fields with different levels of infestation by weed beets. Our results, based on paternity analysis of 3240 progenies from 135 maternal plants using 10 microsatellite loci, clearly demonstrate that even if weedy plants are mostly pollinated by individuals from the same field, some mating events occur between weed beets situated several kilometres apart (up to 9.6 km), with rates of interfield-detected paternities ranging from 11.3% to 17.5%. Moreover, we show that pollen flow appears to be more restricted when individuals are aggregated as most mating events occurred only for short-distance classes. The best-fit dispersal curves were fat-tailed geometric functions for populations exhibiting low densities of weed beets and thin-tailed Weibull function for fields with weed beet high densities. Thus, weed beet populations characterized by low density with geographically isolated individuals may be difficult to detect but are likely to act as pollen traps for pollen emitted by close and remote fields. Hence, it appears evident that interfield pollen-mediated gene flow between weed beets is almost unavoidable and could contribute to the diffusion of (trans)genes in the agricultural landscape.  相似文献   

12.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium) resistant biotypes of Erigeron philadelphicus and E. canadensis , from fields where paraquat had been used for weed control, showed more than 100 times higher resistance than the susceptible biotype of both plants. Excised leaves of the susceptible biotypes wilted when supplied with more than 5 μ M paraquatat at the cut ends, but those from the resistant biotypes did not wilt even at 500 μ M. Autoradiographs indicated that (14CH3)-paraquat taken up through the cut ends was rapidly distributed through the vascular system in leaves of the susceptible biotype, but was barely translocated in leaves of the resistant biotype. The amount of paraquat taken up during 48 h in the resistant biotype was 0.5% of that in the susceptible biotype in light. This difference in paraquat movement may be correlated with paraquat resistance in Erigeron.  相似文献   

13.
The weedy relative of cultivated rice, red rice, can invade and severely infest rice fields, as reported by rice farmers throughout the world. Because of its close genetic relationship to commercial rice, red rice has proven difficult to control. Clearfield (Cl) varieties, which are resistant to the inhibiting herbicides in the chemical group AHAS (acetohydroxyacid synthase), provide a highly efficient opportunity to control red rice infestations. In order to reduce the risk of herbicide resistance spreading from cultivated rice to red rice, stewardship guidelines are regularly released. In Italy, the cultivation of Cl cultivars started in 2006. In 2010, surveillance of the possible escape of herbicide resistance was carried out; 168 red rice plants were sampled in 16 fields from six locations containing Cl and traditional cultivars. A first subsample of 119 plants was analysed after herbicide treatment and the resistance was found in 62 plants. Of these 119 plants, 78 plants were randomly selected and analysed at the level of the AHAS gene to search for the Cl mutation determining the resistant genotype: the Cl mutation was present in all the resistant plants. Nuclear and chloroplast microsatellite markers revealed a high correlation between genetic similarity and herbicide resistance. The results clearly show that Cl herbicide‐resistant red rice plants are present in the field, having genetic relationships with the Cl variety. Finding plants homozygous for the mutation suggests that the crossing event occurred relatively recently and that these plants are in the F2 or later generations. These observations raise the possibility that Cl red rice is already within the cultivated rice seed supply.  相似文献   

14.
采用种子检测法,鉴定了对除草剂高效氟吡甲禾灵产生抗药性的看麦娘(Alopecu-rus aequalis Sobol.)生物型JXRII。为探讨看麦娘对高效氟吡甲禾灵产生抗性的生理反应,以敏感生物型JJSII为对比,喷施高效氟吡甲禾灵后,测定抗药生物型和敏感生物型几个重要生理指标变化情况的差异。结果表明:高效氟吡甲禾灵处理下,JJSII的叶片电解质泄漏率、MDA含量极显著上升,叶绿素、类胡萝卜素含量下降;JXRII叶片的电解质渗漏率、MDA含量、叶绿素、类胡萝卜素均与对照无显著差异;高效氟吡甲禾灵处理下,JJSII的GSH含量在处理后就开始逐渐下降,JXRII的GSH含量始终高于对照;二者可溶性糖含量均增加,敏感生物型JJSII可溶性糖含量增加的幅度远远大于抗性生物型JXRII;这2种群体经除草剂胁迫下,除草剂对敏感性生物型的生理变化影响大,抗性生物型表现为一定的生理适应性。  相似文献   

15.
Plant herbicides inhibit specific enzymes of biosynthetic metabolism, such as acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS). Herbicide resistance can be caused by point mutations at the binding domains, catalytic sites and other regions within multimeric enzymes. Direct-injection electrospray mass spectrometry was used for high-throughput metabolic fingerprinting for finding significant differences among biotypes in response to herbicide application. A Mexican biotype of wild oat (Avena fatua) that displays multiple resistances to ACCase- and ALS-inhibiting herbicides was characterized. The dose–response test showed that the double-resistant biotype had a resistance index of 3.58 for pinoxaden and 3.53 for mesosulfuron-methyl. Resistance was accompanied by characteristic mutations at the site of action: an I-1781-L substitution occurred in the ACCase enzyme and an S-653-N mutation was identified within the ALS enzyme. Other mutations were also detected in the genes of the Mexican biotypes. The ionomic fingerprint showed that the multiple-resistant biotype had a markedly different metabolic pattern under control conditions and that this difference was accentuated after herbicide treatment. This demonstrates that single changes of amino acid sequences can produce several holistic modifications in the metabolism of resistant plants compared to susceptible plants. We conclude that in addition to genetic resistance, additional mechanisms of metabolic adaptation and detoxification can occur in multiple-resistant weed plants.  相似文献   

16.
Crop-wild hybrids and weed beets are the main source of agronomic concern for sugar beet production all over Europe. In order to understand the dynamics of crop-wild interactions and the evolution of weediness in Beta vulgaris, we investigated genetic features of bolting individuals occurring at a local scale, i.e. within two sugar beet fields of the French northern area of sugar beet production. By analysing ploidy level, mitochondrial DNA and microsatellite polymorphism, the genetic diversity and the genetic relationships among three different classes of individuals (variety, in-row and out-row weed-beets) from a given field were examined. Such genetic analyses provide a unique opportunity to obtain evidence for the weeds origin and the evolutionary hypotheses previously stated. All the individuals shared in common the Svulg mitochondrial haplotype, and thus a common maternal origin. Conversely, the large genetic diversity at microsatellite loci highlighted the large diversity of the pollinator plants (cultivated and wild plants) during the-seed production process, as well as during the further evolution of weed beets in the sugar production area. Received: 23 April 2001 / Accepted: 15 June 2001  相似文献   

17.
In this study, we simulate a transgenic rice crop highly infested with red rice to examine transgene transfer from a transgenic line (A2504) resistant to glufosinate ammonium to cohabitant red rice. The red rice was sown along with the transgenic line at the highest density found in naturally infested crops in the region. Agricultural practices similar to those used to control red rice infestation in northern Italy rice fields were used to reproduce the local rice production system. During the first 2 years, the field was treated with herbicide at the appropriate time; in the first year the dosage of herbicide was three times the recommended amount. In this first year, detectable red rice plants that escaped herbicide treatment were manually removed. Nevertheless, two herbicide‐resistant hybrid plants (named 101 and 104) were identified in the experimental field during the second year of cultivation. Phenotypic and molecular characterisation suggests the hybrid nature of these two plants, deriving from crossing events involving A2504, respectively, with red rice (plant 101) and the buffer cultivar Gladio (plant 104). The progeny of two subsequent generations of the two plants were examined and the presence of the transgene detected, indicating stable transfer of the transgene across generations. In conclusion, despite control methods, red rice progeny tolerant to the herbicide can be expected following use of transgenic rice and, consequently, difficulties in controlling this weed with chemicals will emerge in a relatively short time.  相似文献   

18.
We compared the seedbanks, seed rains, plant densities and biomasses of weeds under two contrasting systems of management in beet, maize and spring oilseed rape. Weed seedbank and plant density were measured at the same locations in two subsequent seasons. About 60 fields were sown with each crop. Each field was split, one half being sown with a conventional variety managed according to the farmer's normal practice, the other half being sown with a genetically modified herbicide-tolerant (GMHT) variety, with weeds controlled by a broad-spectrum herbicide. In beet and rape, plant densities shortly after sowing were higher in the GMHT treatment. Following weed control in conventional beet, plant densities were approximately one-fifth of those in GMHT beet. In both beet and rape, this effect was reversed after the first application of broad-spectrum herbicide, so that late-season plant densities were lower in the GMHT treatments. Biomass and seed rain in GMHT crops were between one-third and one-sixth of those in conventional treatments. The effects of differing weed-seed returns in these two crops persisted in the seedbank: densities following the GMHT treatment were about 20% lower than those following the conventional treatment. The effect of growing maize was quite different. Weed density was higher throughout the season in the GMHT treatment. Late-season biomass was 82% higher and seed rain was 87% higher than in the conventional treatment. The difference was not subsequently detectable in the seedbank because the total seed return was low after both treatments. In all three crops, weed diversity was little affected by the treatment, except for transient effects immediately following herbicide application.  相似文献   

19.
Weed control is important and one of the more expensive inputs to sugar beet production. The introduction of genetically modified herbicide tolerant (GMHT) sugar beet would result in a major saving in weed control costs in the crop for growers, including control of problem weeds such as perennial weeds and weed beet. However, there would be other economic consequences of growing GMHT beet, some of which would manifest themselves in other parts of the rotation, such as the previous crop, the cereal stubbles that proceed most beet crops, soil tillage and spray application. The average national saving for UK sugar beet growers if they could use the technology would be in excess of £150 ha?1 yr?1 or £23 million yr?1, which includes reductions in agrochemical use of c. £80 ha,?1 yr?1 or £12 million yr?1. However, for some growers, the gains would be much larger and for a few, less than these figures. The possible cost savings are sufficiently large that they could ensure that sugar beet production, with its regionally important environmental benefits as a spring crop, remains economically viable in the UK post reform of the EU sugar regime.  相似文献   

20.
Wild oat (Avena fatua L.) populations resistant to herbicides that inhibit acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) represent an increasingly important weed control problem. The objective of this study was to determine the ACCase mutation responsible for herbicide resistance in a well-studied wild oat biotype (UMI). A 2039-bp region encompassing the carboxybiotin and acetyl-CoA binding domains of multifunctional plastidic ACCase was analyzed. DNA sequences representing three plastidic ACCase gene loci were isolated from both the resistant UMI and a herbicide-susceptible biotype, consistent with the hexaploid nature of wild oat. Only one nonsynonymous point mutation was found among the resistant wild oat sequences, inferring an isoleucine to leucine substitution. The position of this substitution corresponds to residue 1769 of wheat (Triticum aestivum L.) plastidic ACCase (GenBank accession No. AF029895). Analysis of an F2 population derived from a cross between a herbicide-resistant and a susceptible biotype confirmed co-segregation of herbicide resistance with the mutated ACCase. We conclude that the isoleucine to leucine mutation is responsible for herbicide resistance in UMI wild oat based on a comparison of the substitution site across species and ACCase types. While isoleucine is conserved among plastidic ACCases of herbicide-susceptible grasses, leucine is found in plastidic and cytosolic forms of multifunctional herbicide-resistant ACCase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号