首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
When the product of a vertical square-wave grating (contrast envelope) and a horizontal sinusoidal grating (carrier) are viewed binocularly with different disparity cues they can be perceived transparently at different depths. We found, however, that the transparency was asymmetric; it only occurred when the envelope was perceived to be the overlaying surface. When the same two signals were added, the percept of transparency was symmetrical; either signal could be seen in front of or behind the other at different depths. Differences between these multiplicative and additive signal combinations were examined in two experiments. In one, we measured disparity thresholds for transparency as a function of the spatial frequency of the envelope. In the other, we measured disparity discrimination thresholds. In both experiments the thresholds for the multiplicative condition, unlike the additive condition, showed distinct minima at low envelope frequencies. The different sensitivity curves found for multiplicative and additive signal combinations suggest that different processes mediated the disparity signal. The data are consistent with a two-channel model of binocular matching, with multiple depth cues represented at single retinal locations.  相似文献   

5.
6.
7.
Binocular rivalry occurs when incongruent patterns are presented to corresponding regions of the retinas, leading to fluctuations of awareness between the patterns . One attribute of a stimulus may rival whereas another may combine between the eyes , but it is typically assumed that the dominant features are perceived veridically. Here, we show this is not necessarily the case and that a suppressed visual feature can alter dominant perception. The cortical representations of oriented gratings can interact even when one of them is perceptually suppressed, such that the perceived orientation of the dominant grating is systematically biased depending on the orientation of the suppressed grating. A suppressed inducing pattern has the same qualitative effect as a visible one, but suppression reduces effective contrast by a factor of around six. A simple neural model quantifies and helps explain these illusions. These results demonstrate that binocular rivalry suppression operates in a graded fashion across multiple sites in the visual hierarchy rather than truncating processing at a single site and that suppressed visual information can alter dominant vision in real-time.  相似文献   

8.
If a binocular observer looks at surfaces, the disparity is a continuous vector field defined on the manifold of cyclopean visual directions. We derive this field for the general case that the observer is presented with a curved surface and fixates an arbitrary point. We expand the disparity field in the neighbourhood of a visual direction. The first order approximation can be decomposed into congruences, similarities and deformations. The deformation component is described by the traceless part of the symmetric part of the gradient of the disparity. The deformation component carries all information concerning the slant of a surface element that is contained in the disparity field itself; it is invariant for changes of fixation, differential cyclotorsion and uniform aniseikonia. The deformation component can be found from a comparison of the orientation of surface details in the left and right retinal images. The theory provides a geometric explanation of the percepts obtained with uniform and oblique meridional aniseikonia. We utilize the geometric theory to construct a mechanistic model of stereopsis that obviates the need for internal zooming mechanisms, but nevertheless is insensitive to differential cyclotorsion or uniform aniseikonia.  相似文献   

9.
10.
This review presents the fascinating neurobiology underlying the development of the frog optic tectum, the brain structure where the two separate inputs from the two eye are combined into a single, integrated map. In the species Xenopus laevis, binocular visual information has a dramatic impact on axon growth and connectivity, and the formation of binocular connections in this system provides a rich basis for both theoretical and experimental investigations.  相似文献   

11.
Contrast adaptation and contrast masking in human vision.   总被引:1,自引:0,他引:1  
After a preliminary study of visual evoked potentials (VEPS) to a test grating seen in the presence of masks at different orientations, psychophysical data are presented showing the effects of adaptation and of masking on thresholds for detecting the same test grating. The test is a vertical grating of spatial frequency 2 cycles per degree; adapting and masking gratings differ from the test either in orientation or in spatial frequency. The effects of adaptation and masking are explained by a single mechanism model that assumes: (i) adaptation and masking both alter the contrast response (or transducer) function of the mechanism that detects the test; (ii) masks, but not adaptors, stimulate the mechanism that detects the test; and (iii) a test is detectable when it raises response level by a constant amount. The model incorporates two distinct tuning functions, a broad adaptive contrast function and a narrow effective contrast function. It accounts adequately for all the data, including the location and size of the facilitative dip found in some masking functions, the constant slopes of the threshold elevation segments of adaptation functions and the varying slopes of masking functions. It also predicts the sometimes surprising joint effects of adaptation followed by masking and of two masks operating simultaneously.  相似文献   

12.
Wolfe (1986, Psychol. Rev. 93, 269-282) proposed a model of human binocular vision based on the assumption of two functionally distinct classes of binocular neuron. These neurons may be regarded as logical AND and OR gates. In the present paper we assess the evidence relevant to this assumption. We find that while both types of binocular neuron have been described in the cortex of cat and monkey, there is no indication that they form functionally separate populations. Critical analysis of the psychophysical evidence for AND and OR channels in human vision suggests that much of the data presented in favor of an AND channel is subject to alternative interpretations. We conclude that the available data are not consistent with the existence of separate channels as proposed by Wolfe.  相似文献   

13.
We have investigated the interhemispheric connections of areas 17 and 18 in cats with impaired binocular vision (monocular deprivation, uni- and bilateral strabismus). Monosynaptic neuronal connections were studied using microionophoretic injections of horseradish peroxidase in the single cortical columns and analsys of spatial distribution of retrogradely labelled callosal cells was performed. In the cases of monocular deprivation and strabismus, the spatial asymmetry and eye-specificity of interhemispheric connections are retained. Quantitative changes of connections are more pronounced in strabismic cats. In cats with binocular vision impairments, as well as in control ones, the width of callosal-recipient zone is larger than of the callosal cells zone. This may indicate that interhemispheric connections are non-reciprocal in the areas of cortex that are more distant from the projection of vertical meridian of visual field. We expect that there should be morpho-functional in the cells that are providing connections in opposite directions.  相似文献   

14.
Abstract The ability of the common field grasshopper Chorthippus brunneus to discriminate between different distances under binocular and monocular stimulus conditions is investigated based upon the peering‐jump behaviour. The results show that information obtained from only one eye is sufficient for the grasshopper to determine the jump direction and distance. However, information obtained from both eyes is advantageous for relative distance determination. It is hypothesized that the motion parallax signals from the left and right eye may be summed, thus improving performance. There is no behavioural evidence of a more complex correlation of the information from the two eyes.  相似文献   

15.
Primates are the most visually adapted order of mammals. There is a rich history within anthropology of proposed explanations for the adaptive significance of binocular vision, especially pertaining to primate origins and evolution. Depth perception and orbit morphology have been hypothesized to be functionally related to specialized locomotor or feeding behaviors. Many of these arguments continue to this day. An understanding of specific primate visual adaptations, including binocular vision, can shed light on these long‐term and heated debates.  相似文献   

16.
The role of experience in the development of the central visual pathways has been explored in the past through examination of the consequences of imposed periods of continuously abnormal or biased visual input. The massive changes in the visual cortex (area 17) induced by selected early visual experience, especially monocular deprivation (MD) or experience (ME) where patterned visual input is provided to just one eye, are accompanied by profound and long-standing visual deficits. Although the use of exclusively abnormal experience permits identification of those aspects of the visual cortex and of visual function that can be influenced by visual experience during development, this approach may provide a distorted view of the nature of the role of visual experience because of the absence of any normal visual input. In this study a different approach was used whereby animals were provided daily with separate periods of normal (i.e., binocular exposure) and abnormal (monocular exposure) visual experience. We show that 2 hr of daily normal concordant binocular experience (BE) can outweigh or protect against much longer periods of monocular deprivation (MD) and permit the development of normal visual acuities in the two eyes. This result is not what would be expected if all visual input had equal influence on visual development.  相似文献   

17.
18.
19.
20.
Using monocular and dynamic random dot correlogram (DRDC) stimuli, sequential visual evoked potentials changes were demonstrated in 2 patients following cerebral blindness. The recovery of binocular vision was delayed in comparison to the recovery of monocular vision. The results are not due to simple acuity impairment or convergence deficiency, and thus provide evidence for the vulnerability of postsynaptic cortical mechanisms of human binocular vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号