首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility. Using transgenesis to create strains of Anopheles suitable for SIT could potentially offer several advantages over current approaches, in that the basic design of transgenic constructs designed for other insects should be rapidly transferable to mosquitoes, and induction of sterility as a product of the transgenic modification could obviate the requirement for radiation and its associated deleterious effects. In this paper the progress of different transgenic approaches in constructing tools for SIT will be reviewed.  相似文献   

2.
Tkachuk A  Kim M  Kravchuk O  Savitsky M 《PloS one》2011,6(10):e26422
Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB) into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA) pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms.  相似文献   

3.
4.
Modeling resistance to genetic control of insects   总被引:2,自引:0,他引:2  
The sterile insect technique is an area-wide pest control method that reduces pest populations by releasing mass-reared sterile insects which compete for mates with wild insects. Modern molecular tools have created possibilities for improving and extending the sterile insect technique. As with any new insect control method, questions arise about potential resistance. Genetic RIDL®1 (Release of Insects carrying a Dominant Lethal) technology is a proposed modification of the technique, releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation. Hypothetical resistance to the lethal mechanism is a potential threat to RIDL strategies' effectiveness. Using population genetic and population dynamic models, we assess the circumstances under which monogenic biochemically based resistance could have a significant impact on the effectiveness of releases for population control. We assume that released insects would be homozygous susceptible to the lethal genetic construct and therefore releases would have a built-in element of resistance dilution. We find that this effect could prevent or limit the spread of resistance to RIDL constructs; the outcomes are subject to competing selective forces deriving from the fitness properties of resistance and the release ratio. Resistance that is spreading and capable of having a significant detrimental impact on population reduction is identifiable, signaling in advance a need for mitigating action.  相似文献   

5.
The release of genetically modified plants is governed by regulations that aim to provide an assessment of potential impact on the environment. One of the most important components of this risk assessment is an evaluation of the probability of gene flow. In this review, we provide an overview of the current literature on gene flow from transgenic plants, providing a framework of issues for those considering the release of a transgenic plant into the environment. For some plants gene flow from transgenic crops is well documented, and this information is discussed in detail in this review. Mechanisms of gene flow vary from plant species to plant species and range from the possibility of asexual propagation, short- or long-distance pollen dispersal mediated by insects or wind and seed dispersal. Volunteer populations of transgenic plants may occur where seed is inadvertently spread during harvest or commercial distribution. If there are wild populations related to the transgenic crop then hybridization and eventually introgression in the wild may occur, as it has for herbicide resistant transgenic oilseed rape (Brassica napus). Tools to measure the amount of gene flow, experimental data measuring the distance of pollen dispersal, and experiments measuring hybridization and seed survivability are discussed in this review. The various methods that have been proposed to prevent gene flow from genetically modified plants are also described. The current “transgenic traits” in the major crops confer resistance to herbicides and certain insects. Such traits could confer a selective advantage (an increase in fitness) in wild plant populations in some circumstances, were gene flow to occur. However, there is ample evidence that gene flow from crops to related wild species occurred before the development of transgenic crops and this should be taken into account in the risk assessment process.  相似文献   

6.
The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes.  相似文献   

7.
We propose a mathematical model to assess the effects of irradiated (or transgenic) male insects introduction in a previously infested region. The release of sterile male insects aims to displace gradually the natural (wild) insect from the habitat. We discuss the suitability of this release technique when applied to peri-domestically adapted Aedes aegypti mosquitoes which are transmissors of Yellow Fever and Dengue disease.  相似文献   

8.
The success of the sterile insect technique (SIT) and other genetic strategies designed to eliminate large populations of insects relies on the efficient inundative releases of competitive, sterile males into the natural habitat of the target species. As released sterile females do not contribute to the sterility in the field population, systems for the efficient mass production and separation of males from females are needed. For vector species like mosquitoes, in which only females bite and transmit diseases, the thorough removal of females before release while leaving males competent to mate is a stringent prerequisite. Biological, genetic and transgenic approaches have been developed that permit efficient male-female separation for some species considered for SIT. However, most sex separation methods have drawbacks and many of these methods are not directly transferable to mosquitoes. Unlike genetic and transgenic systems, biological methods that rely on sexually dimorphic characters, such as size or development rate, are subject to natural variation, requiring regular adjustment and re-calibration of the sorting systems used. The yield can be improved with the optimization of rearing, but the scale of mass production places practical limits on what is achievable, resulting in a poor rearing to output ratio. High throughput separation is best achieved with scalable genetic or transgenic approaches.  相似文献   

9.
The sterile insect technique (SIT) is a method of eradicating insects by releasing mass-reared sterilized males into fields to reduce the hatchability of eggs laid by wild females that have mated with the sterile males. SIT requires mass-production of the target insect, and maintenance of the quality of the mass-reared insects. The most important factor is successful mating between wild females and sterile males because SIT depends on their synchronized copulation. Therefore, understanding the mating systems and fertilization processes of target insects is prerequisite. Insect behavior often has circadian rhythms that are controlled by a biological clock. However, very few studies of relationships between sterile insect quality and circadian rhythm have been performed compared with the amount of research on the mating ability of target insects. The timing of male copulation attempts with receptivity of females is key to successful mating between released males and wild females. Therefore, we should focus on the mechanisms controlling the timing of mating in target insects. On the other hand, in biological control projects, precise timing of the release of natural enemies to attack pest species is required because behavior of pests and control agents are affected by their circadian rhythms. Involving both chronobiologists and applied entomologists might produce novel ideas for sterile insect quality control by synchronized sex between mass-reared and wild flies, and for biological control agent quality by matching timing in activity between predator activity and prey behavior. Control of the biological clocks in sterile insects or biological control agents is required for advanced quality control of rearing insects.  相似文献   

10.
Trait improvement of turfgrass through genetic engineering is important to the turfgrass industry and the environment. However, the possible transgene escape to wild and non-transformed species raises ecological and commercial concerns. Male sterility provides an effective way for interrupting gene flow. We have designed and synthesized two chimeric gene constructs consisting of a rice tapetum-specific promoter (TAP) fused to either a ribonuclease gene barnase, or the antisense of a rice tapetum-specific gene rts. Both constructs were linked to the bar gene for selection by resistance to the herbicide glufosinate. Agrobacterium-mediated transformation of creeping bentgrass (cv Penn A-4) with both constructs resulted in herbicide-resistant transgenic plants that were also 100% pollen sterile. Mendelian segregation of herbicide resistance and male sterility was observed in T1 progeny derived from crosses with wild-type plants. Controlled self- and cross-pollination studies showed no gene transfer to non-transgenic plants from male-sterile transgenic plants. Thus, male sterility can serve as an important tool to control transgene escape in bentgrass, facilitating the application of genetic engineering in producing environmentally responsible turfgrass with enhanced traits. It also provides a tool to control gene flow in other perennial species using transgenic technology.  相似文献   

11.
Handler AM 《Genetica》2002,116(1):137-149
The genetic manipulation of non-drosophilid insect species is possible by the creation of recombinant DNA constructs that can be integrated into host genomes by several transposon-based vector systems. This technology will allow the development and testing of a variety of systems that can improve existing biological control methods, and the development of new highly efficient methods. For programs such as sterile insect technique (SIT), transgenic strains may include fluorescent protein marker genes for detection of released insects, and conditional gene expression systems that will result in male sterility and female lethality for genetic sexing. Conditional expression systems include the yeast GAL4 system and the bacterial Tet-off and Tet-on systems that can, respectively, negatively or positively regulate expression of genes for lethality or sterility depending on a dietary source of tetracycline. Importantly, strains for male sterility must also incorporate an effective system for genetic sexing, since typically, surviving females would remain fertile. Models for the use of these expression systems and associated genetic material come from studies in Drosophila and, while many of these systems should be transferable to other insects, continued research will be necessary in insects of interest to clone genes, optimize germ-line transformation, and perform vector stability studies and risk assessment for their release as transgenic strains.  相似文献   

12.
Pest insects harm crops, livestock and human health, either directly or by acting as vectors of disease. The Sterile Insect Technique (SIT)--mass-release of sterile insects to mate with, and thereby control, their wild counterparts--has been used successfully for decades to control several pest species, including pink bollworm, a lepidopteran pest of cotton. Although it has been suggested that genetic engineering of pest insects provides potential improvements, there is uncertainty regarding its impact on their field performance. Discrimination between released and wild moths caught in monitoring traps is essential for estimating wild population levels. To address concerns about the reliability of current marking methods, we developed a genetically engineered strain of pink bollworm with a heritable fluorescent marker, to improve discrimination of sterile from wild moths. Here, we report the results of field trials showing that this engineered strain performed well under field conditions. Our data show that attributes critical to SIT in the field--ability to find a mate and to initiate copulation, as well as dispersal and persistence in the release area--were comparable between the genetically engineered strain and a standard strain. To our knowledge, these represent the first open-field experiments with a genetically engineered insect. The results described here provide encouragement for the genetic control of insect pests.  相似文献   

13.
Transposon-based vectors currently provide the most suitable gene transfer systems for insect germ-line transformation and are used for molecular improvement of the Sterile Insect Technique. However, the long time stability of genome-integrated transposon constructs depends on the absence of transposase activity that could remobilize the transposon-embedded transgenes. To achieve transgene stability transposon vectors are usually non-autonomous, lacking a functional transposase gene, and chosen so that endogenous or related transposon activities are not present in the host. Nevertheless, the non-autonomous transposon-embedded transgenes could become unstable by the unintended presence of a mobilizing transposase that may have been undetected or subsequently entered the host species by horizontal gene transfer. Since the field release of transgenic insects will present environmental concerns relating to large populations and high mobility, it will be important to ensure that transgene constructs are stably integrated for maintaining strain integrity and eliminating the possibility for unintentional transfer into the genome of another organism. Here we review efficient methods to delete or rearrange terminal repeat sequences of transposons necessary for their mobility, subsequent to their initial genomic integration. These procedures should prevent transposase-mediated remobilization of the transgenes, ensuring their genomic stability.  相似文献   

14.
Traditional chemically based methods for insect control have been shown to have serious limitations, and many alternative approaches have been developed and evaluated, including those based on the use of different types of mutation. The mutagenic action of ionizing radiation was well known in the field of genetics long before it was realized by entomologists that it might be used to induce dominant lethal mutations in insects, which, when released, could sterilize wild female insects. The use of radiation to induce dominant lethal mutations in the sterile insect technique (SIT) is now a major component of many large and successful programs for pest suppression and eradication. Adult insects, and their different developmental stages, differ in their sensitivity to the induction of dominant lethal mutations, and care has to be taken to identify the appropriate dose of radiation that produces the required level of sterility without impairing the overall fitness of the released insect. Sterility can also be introduced into populations through genetic mechanisms, including translocations, hybrid incompatibility, and inherited sterility in Lepidoptera. The latter phenomenon is due to the fact that this group of insects has holokinetic chromosomes. Specific types of mutations can also be used to make improvements to the SIT, especially for the development of strains for the production of only male insects for sterilization and release. These strains utilize male translocations and a variety of selectable mutations, either conditional or visible, so that at some stage of development, the males can be separated from the females. In one major insect pest, Ceratitis capitata, these strains are used routinely in large operational programs. This review summarizes these developments, including the possible future use of transgenic technology in pest control.  相似文献   

15.
Dengue is the most medically important arthropod-borne viral disease, with 50-100 million cases reported annually worldwide. As no licensed vaccine or dedicated therapy exists for dengue, the most promising strategies to control the disease involve targeting the predominant mosquito vector, Aedes aegypti. However, the current methods to do this are inadequate. Various approaches involving genetically engineered mosquitoes have been proposed, including the release of transgenic sterile males. However, the ability of laboratory-reared, engineered male mosquitoes to effectively compete with wild males in terms of finding and mating with wild females, which is critical to the success of these strategies, has remained untested. We report data from the first open-field trial involving a strain of engineered mosquito. We demonstrated that genetically modified male mosquitoes, released across 10 hectares for a 4-week period, mated successfully with wild females and fertilized their eggs. These findings suggest the feasibility of this technology to control dengue by suppressing field populations of A. aegypti.  相似文献   

16.
Biological invasions have dramatically altered the natural world by threatening native species and their communities. Moreover, when the invading species is a vector for human disease, there are further substantive public health and economic impacts. The development of transgenic technologies is being explored in relation to new approaches for the biological control of insect pests. We investigate the use of two control strategies, classical sterile insect techniques and transgenic late-acting bisex lethality (Release of Insects carrying a Dominant Lethal), for controlling invasion of the mosquito Aedes aegypti using a spatial stage-structured mathematical model. In particular, we explore the use of a barrier zone of sterile/transgenic insects to prevent or impede the invasion of mosquitoes. We show that the level of control required is not only highly sensitive to the rate at which the sterile/transgenic males are released in the barrier zone but also to the spatial range of release. Our models characterise how the distribution of sterile/transgenic mosquitoes in the barrier zone can be controlled so as to minimise the number of mass-produced insects required for the arrest of species invasion. We predict that, given unknown rates of mosquito dispersal, management strategies should concentrate on larger release areas rather than more intense release rates for optimal control.  相似文献   

17.
Knowing the dispersal of released insects and estimating the size of field populations are keys to the successful implementation of area-wide management (AWM) programmes based on the sterile insect technique (SIT), as they determine the release strategy of sterile males. Mark–release–recapture (MRR) is a common method used to estimate field populations and spatiotemporal dynamics. However, the extent to which the pest is attracted to lures is often difficult to identify, thereby biasing extrapolation to movement patterns and population size. We performed MRR experiments on the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), in a fruit-growing area in Senegal. Methyl eugenol and protein baits were used to trap males and females, respectively. After studying the suitability of marking B. dorsalis with fluorescent pigments at the laboratory, two releases of marked sterile flies were organized in the centre of an organic mango orchard, first in the late mango fruiting stage and second in the fruit setting stage. Traps were placed symmetrically along a 250 and 500 m radius from the release point. A very small fraction of the released individuals was recaptured: 0.45% in the first release and 3.08% in the second. Trapping of both sterile and wild flies was completely anisotropic. Sterile flies were mostly trapped at a relatively short distance (250 m) from the release point, in the first two days. Male trapping using methyl eugenol was highly effective, whereas the response of females to food bait traps was low. The direction of the wind was the main driver of recapture, with flies heading upwind. The results underline the importance of taking the odour plume around the traps into account when estimating populations, and the heterogeneous spread of the wild population in the landscape for the set-up of the release strategy of sterile insects for SIT-based AWM.  相似文献   

18.
19.
The triatomine vectors of Chagas disease are obligate haematophagous insects, feeding on vertebrate blood throughout their entire developmental cycle. As a result of obtaining their nutrition from a single food source, their diet is devoid of certain vitamins and nutrients. Consequently, these insects harbour populations of bacterial symbionts within their intestinal tract, which provide the required nutrients that are lacking from their diet. We have isolated and characterised symbiont cultures from various triatomine species and developed a method for genetically transforming them. We can then reintroduce them into their original host species, thereby producing stable paratransgenic insects in which we are able to express heterologous gene products. Using this methodology, we have generated paratransgenic Rhodnius prolixus that are refractory for infection with Trypanosoma cruzi. Two examples of potentially refractory genes are currently being expressed in paratransgenic insects. These include the insect immune peptide cecropin A and active single chain antibody fragments. We have also developed an approach that would allow introduction of genetically modified bacterial symbionts into natural populations of Chagas disease vectors. This approach utilises the coprophagic behaviour of these insects, which is the way in which the symbionts are transmitted among bug populations in nature. The production and ultimate release of transgenic or paratransgenic insects for public health applications is potentially very promising but also worthy of much careful consideration with respect to environmental, political, and human safety concerns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号