首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

2.
本研究采用温室盆栽试验,利用丛枝菌根(AM)真菌摩西管柄囊霉Funneliformis mosseae进行接种试验,研究了在Cd胁迫下(0、5、15和30mg/kg)接种AM真菌对高羊茅Festuca elata ‘Crossfire II’的生物量、防御酶活性、磷和镉(Cd)含量的影响。结果表明,随着Cd浓度的增加,高羊茅的菌根侵染率和菌根相对依赖性有所增加。接种AM真菌改善了磷从植株根系向地上部的转运,有助于植株在地上部积累更多的磷。此外,AM真菌和Cd胁迫对高羊茅植株抗氧化酶活性都有显著影响,在镉胁迫下,与未接种植株相比,接种AM真菌显著提高了植株的过氧化氢酶活性,而显著降低了植株的丙二醛含量。与未接种植株相比,接种摩西管柄囊霉显著提高了寄主植物对Cd的富集能力,有利于重金属在根部的积累,同时降低了地上部的Cd含量。本研究表明,高羊茅-丛枝菌根共生体在Cd污染土壤的修复中具有潜在应用价值。  相似文献   

3.
Phytoremediation is perceived as an alternative technology for contaminated site remediation. Yet, the mechanisms plants use to remove organic contaminants have not been fully elucidated. The objective of the current study was, therefore, undertaken to clarify the contribution of plants to the disappearance of organic contaminants in soil. Four plant species, including alfalfa, tall fescue, barley, and orchard grass, were examined for the ability to facilitate the degradation of the polyhydric aromatic hydrocarbon, anthracene. Soil samples were intermittently collected for two months to measure the disappearance of anthracene and bacterial number by GC and epifluorescence microscopy, respectively. Plant exudates were collected to determine their ability to solubilize anthracene. Alfalfa showed a 28% enhancement in the disappearance of anthracene compared to the unplanted control. Root exudates from alfalfa increased the release of soluble anthracene by 25 to 80% compared to the other species and unplanted controls. Among the plants tested, there was a positive correlation between enhancing the disappearance of anthracene by plants grown in soil and increasing the release of anthracene by isolated plant exudates. The results suggest that root exudates facilitate the mobilization of anthracene from soil and that the successful implementation of phytoremediation depends on the plant species. Further, root exudates may be a useful tool in screening plants for possible application in anthracene remediation.  相似文献   

4.
Malinowski  D.P.  Belesky  D.P.  Hill  N.S.  Baligar  V.C.  Fedders  J.M. 《Plant and Soil》1998,198(1):53-61
Tall fescue (Festuca arundinacea Schreb.) plants infected by the fungal endophyte Neotyphodium coenophialum (Morgan-Jones & Gams) (Glenn et al., 1996) often perform better than noninfected plants, especially in marginal resource environments. There is a lack of information about endophyte related effects on the rhizosphere of grasses. In a greenhouse experiment, four endophyte-infected (E+) tall fescue clones (DN2, DN4, DN7, DN11) and their endophyte-free (E–) forms were grown in limed (pH 6.3) Porter soil (low fertility, acidic, high aluminum and low phosphorus content, coarse-loamy mixed mesic Umbric Dystrochrept) at three soil P levels (17, 50, and 96 mg P kg-1 soil) for five months. Excluding the genotype effect, endophyte infection significantly increased cumulative herbage DM yield by 8% at 17 mg P kg-1 soil but reduced cumulative herbage DM yield by 12% at 96 mg P kg-1 soil. With increased P availability in the soil, shoot and root DM, and root/shoot ratio in E+ plants were significantly less when compared to E– plants. Endophyte infection increased specific root length at 17 and 50 mg P kg-1soil. At soil P level of 17 mg P kg-1soil, E+ plants had significantly higher P concentrations both in roots and shoots. Similar relationships were found for Mg and Ca. E+ plants had significantly higher Zn, Fe, and Al concentration in roots, and lower Mn and Al concentration in shoots when compared to E– plants. Ergot alkaloid concentration and content in shoot of E+ plants increased with increasing P availability in the soil from 17 to 50 mg P kg-1 but declined again at 96 mg P kg-1 soil. Ergot alkaloid accumulation in roots increased linearly with P availability in the soil. Results suggest that endophyte infection affects uptake of phosphorus and other mineral nutrients and may benefit tall fescue grown on P-deficient soils. Phosphorus seems also to be involved in ergot alkaloid accumulation in endophyte-infected tall fescue.  相似文献   

5.

Background

Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated.

Scope

Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is ‘Roundup Ready’ (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.  相似文献   

6.
7.
Aim of this trial was to verify the occurrence and the distribution of hexachlorocyclohexanes (HCHs) in soil, sediment, straw, alfalfa, other animal feed grown in farms with contaminated soil. In the present study two years of monitoring activity in the province of Roma and Frosinone was reported. Experimental trial in two contaminated sites was carried out on uptake and translocation of HCHs in maize and alfalfa. In 19 sites soil, forage and weed has been collected for two years, soil samples consisted in cores of 40 cm to test the presence of HCHs at different deep. The analytical determinations in soil and plant samples were carried out by gas liquid chromatography with electron capture detector and confirmed by mass detector. In the first year (2005- 2006) 68% of soil samples were contaminated (HCHs > LOQ) and 3% of vegetable samples. In the second year (2006- 2007) 42% of soil samples resulted positive and 26% of vegetable matrix. In particular B hexacyclohexane was detected in wheat stem (0.037 mg/kg) with a soil contamination of 0.039 mg/kg and in alfalfa (0.012 mg/kg) with presence in soil of 0.004 mg/kg. Experimental trials on maize evidenced a translocation factor for this isomer stem/soil of 0.006 mg/kg ? and for grain of 0.005 mg/kg. On alfalfa translocation factor root/soil was 0.01 and shot/soil 0.009. A propose to calculate the threshold value of soil contamination to admit crop grown destined to animal feed, would be based on HCHs LOD values weighted with translocation factor.  相似文献   

8.
以感染内生真菌(endophyte-infected,EI)和不感染内生真菌(endophyte-free,EF)的高羊茅(Festuca arundinacea Schreb.)为材料,在温室沙培条件下研究内生真菌对高羊茅适应缺磷及利用不同形态磷肥的影响。结果表明,1)缺磷条件下,高羊茅EI和EF植株生长差异不显著;正常供磷条件下,高羊茅EI植株拥有更多分蘖数和绿叶数。说明正常供磷条件下内生真菌改善了宿主高羊茅的生长。2)与水溶性磷相比,高羊茅根有机酸和酸性磷酸酶(acid phosphatase,APase)活性在难溶性磷条件下显著增加,而根总酚含量无显著变化。在水溶性磷条件下,高羊茅EI植株根总酚含量显著高于EF植株,此时EI植株比EF植株拥有更多分蘖数和绿叶数,说明在水溶性磷条件下内生真菌对宿主地上部生长具有一定贡献。在难溶性磷条件下,虽然高羊茅EI植株根总酚含量仍然高于EF植株,但同时EI植株根有机酸含量显著低于EF植株,因此内生真菌感染只是增大了宿主植物的根冠比,而对分蘖数和绿叶数等无显著影响,说明内生真菌对宿主利用难溶性磷贡献不大。可见,内生真菌对宿主植物的生长在水溶性磷条件下更有利。  相似文献   

9.
A greenhouse study was conducted over a 12-month period to investigate the fate of polycyclic aromatic hydrocarbons (PAHs) in soil using phytoremediation as a secondary treatment. The soil was pretreated by composting for 12 weeks, then planted with tall fescue (Festuca arundinacea), annual ryegrass (Lolium multiflorum), and yellow sweet clover (Melilotus officinalis). Two sets of unvegetated controls also were evaluated, one fertilized and one unfertilized. Total PAH concentrations decreased in the tall fescue, annual ryegrass, and yellow sweet clover treatments by 23.9%, 15.3%, and 9.1%, respectively, whereas the control was reduced by less than 5%. The smaller two- and most of the three-ringed compounds--naphthalene, acenaphthylene, acenaphthene, fluorene, and anthracene--were not found in detectable concentrations in any of the treatments. The most probable number analysis for microbial PAH degraders did not show any statistically significant differences among treatments. There were significant differences among treatments (p < 0.05) for the residual concentrations of five of the target PAHs. Root surface area measurements indicated that tall fescue and annual ryegrass both had significantly higher root surface area than yellow sweet clover, although the two species were not significantly different from each other. The tall fescue treatment resulted in the highest root and shoot biomass, followed by annual ryegrass and yellow sweet clover, and also had the highest percent of contaminant removal after 12 months. These results imply a positive relationship between plant biomass development and PAH biodegradation.  相似文献   

10.
Tall fescue (Festuca arundinacea Schreb.) is an important turf and forage grass species worldwide. Fungal diseases present a major limitation in the maintenance of tall fescue lawns, landscapes, and forage fields. Two severe fungal diseases of tall fescue are brown patch, caused by Rhizoctonia solani, and gray leaf spot, caused by Magnaporthe grisea. These diseases are often major problems of other turfgrass species as well. In efforts to obtain tall fescue plants resistant to these diseases, we introduced the bacteriophage T4 lysozyme gene into tall fescue through Agrobacterium-mediated genetic transformation. In replicated experiments under controlled environments conducive to disease development, 6 of 13 transgenic events showed high resistance to inoculation of a mixture of two M. grisea isolates from tall fescue. Three of these six resistant plants also displayed significant resistance to an R. solani isolate from tall fescue. Thus, we have demonstrated that the bacteriophage T4 lysozyme gene confers resistance to both gray leaf spot and brown patch diseases in transgenic tall fescue plants. The gene may have wide applications in engineered fungal disease resistance in various crops.  相似文献   

11.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

12.
Huang  Bingru  Fu  Jinmin 《Plant and Soil》2000,227(1-2):17-26
The study was conducted to investigate carbon metabolic responses to surface soil drying for cool-season grasses. Kentucky bluegrass (Poa pratensis L.) and tall fescue (Festuca arundinaceae Schreb.) were grown in a greenhouse in split tubes consisting of two sections. Plants were subjected to three soil moisture regimes: (1) well-watered control; (2) drying of upper 20-cm soil (upper drying); and (3) drying of whole 40-cm soil profile (full drying). Upper drying for 30 d had no dramatic effects on leaf water potential (Ψleaf) and canopy photosynthetic rate (Pn) in either grass species compared to the well-watered control, but it reduced canopy respiration rate (Rcanopy) and root respiration rate in the top 20 cm of soil (Rtop). For both species in the lower 20 cm of wet soil, root respiration rates (Rbottom) were similar to the control levels, and carbon allocation to roots increased with the upper soil drying, particularly for tall fescue. The proportion of roots decreased in the 0-20 cm drying soil, but increased in the lower 20 cm wet soil for both grass species; the increase was greater for tall fescue. The Ψleaf, Pn, Rcanopy, Rtop, Rbottom, and carbon allocation to roots in both soil layers were all significantly higher for upper dried plants than for fully dried plants of both grass species. The reductions in Rcanopy and Rtop in surface drying soil and increases in root respiration and carbon allocation to roots in lower wet soil could help these grasses cope with surface-soil drought stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
14.
香柱菌属Epichloë内生真菌存在于宿主植物地上部组织,不仅能提高宿主植物对生物与非生物逆境的抗性,而且能对周围环境中的微生物产生影响。该研究以染内生菌(endophyte-infected,EI)和不染菌(endophyte-free,EF)苇状羊茅Festuca arundinacea为实验材料,探究内生真菌和不同水平盐碱胁迫处理对宿主根系丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性和组成的影响。结果表明,内生真菌和盐碱胁迫处理对苇状羊茅根系AMF多样性影响存在交互作用。EF苇状羊茅根系AMF多样性随盐碱胁迫处理水平的增加而降低,内生真菌的存在缓解了这一效应,在200和400 mmol/L盐碱胁迫处理下,内生真菌感染增加了苇状羊茅根系AMF多样性;此外,内生真菌感染改变了苇状羊茅根系AMF群落组成,降低了优势属Funneliformis相对多度,增加了ClaroideoglomusGlomus和unclassified AMF相对多度。结构方程模型结果表明,内生真菌通过间接增加土壤总磷浓度对苇状羊茅根系AMF多样性产生影响。本研究为筛选盐碱污染区生态修复的植物-微生物共生体提供基础。  相似文献   

15.
Phytoremediation can be a viable alternative to traditional, more costly remediation techniques. Three greenhouse studies were conducted to evaluate plant growth with different soil amendments in crude oil-contaminated soil. Growth of alfalfa (Medicago sativa L., cultivar: Riley), bermudagrass (Cynodon dactylon L., cultivar: Common), crabgrass (Digitaria sanguinalis, cultivar: Large), fescue (Lolium arundinaceum Schreb., cultivar: Kentucky 31), and ryegrass (Lolium multiflorum Lam., cultivar: Marshall) was determined in crude oil-contaminated soil amended with either inorganic fertilizer, hardwood sawdust, papermill sludge, broiler litter or unamended (control). In the first study, the addition of broiler litter reduced seed germination for ryegrass, fescue, and alfalfa. In the second study, bermudagrass grown in broiler litter-amended soil produced the most shoot biomass, bermudagrass produced the most root biomass, and crabgrass and bermudagrass produced the most root length. In the third study, soil amended with broiler litter resulted in the greatest reduction in gravimetric total petroleum hydrocarbon (TPH) levels across the six plant treatments following the 14-wk study. Ryegrass produced more root biomass than any other species when grown in inorganic fertilizer- or hardwood sawdust + inorganic fertilizer-amended soil. The studies demonstrated that soil amendments and plant species selection were important considerations for phytoremediation of crude oil-contaminated soil.  相似文献   

16.
17.
Fungal endophytes in cool-season grasses may affect communities at multiple trophic levels. However, it is unclear whether community-scale endophyte effects arise due to the endophyte itself or as a result of unique, endophyte–host interactions. We used a long-term field experiment to test whether common-toxic (CT) and non-ergot alkaloid-producing (novel) endophytes in Schedonorus arundinaceus (tall fescue) forage cultivars consistently affect communities across tall fescue hosts. Tilled plots (2 × 2 m; Guelph, ON) were seeded with Georgia 5 and Jesup cultivars containing either the CT or AR542 (novel) endophyte and allowed to be re-colonized by plant species from the local propagule pool. Non-seeded control plots were included to assess effects of seeding the non-native grass. We assessed plant, invertebrate, soil moisture, and soil nutrient responses to the endophyte–cultivar treatments after four growing seasons. Seeding tall fescue affected plant species abundances, but not richness, and did not consistently alter soil moisture and nutrient pools. Endophyte identity in the tall fescue cultivars affected the communities, but effects were not consistent between cultivars. Within Georgia 5, the AR542 endophyte reduced tall fescue abundance and altered the invertebrate community relative to CT plots. Within Jesup, the AR542 endophyte reduced species evenness and decreased soil moisture during dry periods relative to CT plots. Endophyte effects were not consistent between cultivars, and it is probable that the community-scale effects of endophyte infection in tall fescue cultivars arise due to unique interactions between cultivar and endophyte.  相似文献   

18.
A study was conducted to characterize changes in bermudagrass (Cynodon dactylon [L.] Pers.) and tall fescue (Festuca arundinacea Schreb.) root development over time and with depth, and to determine the effects of defoliation interval and chemical seedhead suppression on root and shoot growth. Field plots were established on a fine-silty, mixed mesic Typic Fragiudult soil in Fayetteville, AR, USA, and each plot contained three minirhizotrons (plexiglass observation tubes) to a depth of 40 cm. Images of roots in 10-cm depth increments were periodically videorecorded, and total root length (RL) and root length density (RLD) were measured with a computer-interfaced tracing probe. Treatments consisted of two cutting intervals, 3 and 6 weeks, and two plant growth regulator (PGR) treatments, an untreated control and either 300 g ha-1 mefluidide on tall fescue in early spring of both years or 10 g ha-1 each of metsulfuron methyl (MSM) and sulfometuron methyl (SMM) applied in late May of both post-establishment years. Data were analyzed separately for the establishment period (planting to the first date of PGR application) and the subsequent post-establishment period. Bermulagrass exhibited a two-stage root establishment pattern characterized first by minimal root development in conjunction with stolon proliferation and soil surface colonization, followed by accumulation of total RL over two subsequent forage production seasons. There was a net accumulation of root mass during the winter dormancy period of 1986–87. Total RL of tall fescue peaked one and a half years after planting. Cutting interval had no influence on RL and RLD. Application of a PGR did not affect RL but did alter RLD of both species. Application of mefluidide to tall fescue stimulated RLD 64 days after application, whereas bermudagrass RLD was retarded by MSM and SMM up to 50 days after application. Trends in root growth did not closely follow patterns of shoot growth. Published with the approval of the Director of the Arkansas Agricultural Experiment Station. Published with the approval of the Director of the Arkansas Agricultural Experiment Station.  相似文献   

19.
A 3-yr project was initiated in 1993 to examine the effects of insecticides and sustained whitefly, Bemisia argentifolii Bellows & Perring [aka. B tabaci Gennadius (Strain B)], feeding on alfalfa plant growth and vigor in greenhouse cage studies, and to determine the impact of natural Bemisia whitefly populations on alfalfa forage yields and quality in a large-plot field experiment. Alfalfa plant growth and vigor after exposure to imidacloprid and a mixture of fenpropathrin and acephate insecticides did not differ from untreated plants in the greenhouse. Consequently, foliar and soil applied insecticides were used to manipulate whitefly densities on alfalfa plants to measure whitefly feeding effects on plant growth and forage yield. Heavy whitefly densities on untreated alfalfa plants in the greenhouse resulted in significant reductions in relative growth rates and net assimilation rates as compared with imidacloprid-treated plants that were maintained relatively whitefly-free. Reductions in alfalfa plant growth measured between infested and treated plants were proportional to whitefly densities. Field plot results derived from three crop seasons were relatively consistent with our greenhouse trials. Both experimental approaches clearly showed that alfalfa plants exposed to high densities of whitefly immatures and adults grew at a significantly slower rate and produced less foliage. As a result of reduced growth rates, alfalfa maturity in the naturally infested plots was estimated to be approximately 7-10 d behind managed plots. Delays in maturity resulted in significant reductions in forage yields of 13-18% during August-September harvests when whitefly populations reached peak abundance. Whitefly feeding stresses also effected hay quality through the reduction of crude protein content and contamination of foliage with honeydew and sooty mold. The status of the Bemisia whiteflies as an economic pest to alfalfa is clearly evident from these studies, but the damage potential of whiteflies in the southwestern United States appears to be restricted to one or two harvest periods during the summer coinciding with peak adult populations and their dispersal from alternate host crops.  相似文献   

20.
Tall fescue EST-SSR markers with transferability across several grass species   总被引:26,自引:0,他引:26  
Tall fescue (Festuca arundinacea Schreb.) is a major cool season forage and turf grass in the temperate regions of the world. It is also a close relative of other important forage and turf grasses, including meadow fescue and the cultivated ryegrass species. Until now, no SSR markers have been developed from the tall fescue genome. We designed 157 EST-SSR primer pairs from tall fescue ESTs and tested them on 11 genotypes representing seven grass species. Nearly 92% of the primer pairs produced characteristic simple sequence repeat (SSR) bands in at least one species. A large proportion of the primer pairs produced clear reproducible bands in other grass species, with most success in the close taxonomic relatives of tall fescue. A high level of marker polymorphism was observed in the outcrossing species tall fescue and ryegrass (66%). The marker polymorphism in the self-pollinated species rice and wheat was low (43% and 38%, respectively). These SSR markers were useful in the evaluation of genetic relationships among the Festuca and Lolium species. Sequencing of selected PCR bands revealed that the nucleotide sequences of the forage grass genotypes were highly conserved. The two cereal species, particularly rice, had significantly different nucleotide sequences compared to the forage grasses. Our results indicate that the tall fescue EST-SSR markers are valuable genetic markers for the Festuca and Lolium genera. These are also potentially useful markers for comparative genomics among several grass species.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号