首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.  相似文献   

3.
Sulforaphane (SFN), a phytochemical found in broccoli and other cruciferous vegetables, is a potent antioxidant and anti‐inflammatory agent with reported effects in cancer chemoprevention and suppression of infection with intracellular pathogens. Here we report on the impact of SFN on infection with Chlamydia trachomatis (Ct), a common sexually transmitted pathogen responsible for 131 million new cases annually worldwide. Astoundingly, we find that SFN as well as broccoli sprouts extract (BSE) promote Ct infection of human host cells. Both the number and size of Ct inclusions were increased when host cells were pretreated with SFN or BSE. The initial investigations presented here point to both the antioxidant and thiol alkylating properties of SFN as regulators of Ct infection. SFN decreased mitochondrial protein sulfenylation and promoted Ct development, which were both reversed by treatment with mitochondria‐targeted paraquat (MitoPQ). Inhibition of the complement component 3 (complement C3) by SFN was also identified as a mechanism by which SFN promotes Ct infections. Mass spectrometry analysis found alkylation of cysteine 1010 (Cys1010) in complement C3 by SFN. The studies reported here raise awareness of the Ct infection promoting activity of SFN, and also identify potential mechanisms underlying this activity.  相似文献   

4.
The aim of this study was to study RAS‐siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS‐siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS‐siRNA group, paclitaxel group and RAS‐siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS‐siRNA group, and the number of apoptosis cells in the paclitaxel and RAS‐siRNA group is significantly most than the paclitaxel group and RAS‐siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS‐siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS‐siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
BackgroundCeefourin-1 is a specific MRP4/ABCC4 inhibitor with potential antileukemic activity. In this study, we evaluate the ability of ceefourin-1 alone or in combination with histamine, an approved antileukemic agent, to induce cell differentiation or apoptosis in human acute myeloid leukemic cells. We also examine ceefourin-1 toxicity in mice.MethodsU937, HL-60, and KG1a cells were used as models for human acute myeloid leukemia. Cyclic AMP efflux was estimated by measuring intracellular and extracellular cAMP levels. Cell differentiation was assessed by levels of CD14 and CD11b by FACS, and CD88 by western blot, and by cell morphology. Apoptosis was evaluated by cleavage of caspase-3 and PARP by western blot, and by annexin V binding assay. Subacute toxicity study of ceefourin-1 was carried out in BALB/c mice.ResultsCeefourin-1 inhibits cAMP exclusion in AML cells and promotes intracellular signaling via CREB. Ceefourin-1 leads AML cells to apoptosis and histamine potentiates this effect, without evidence of cell differentiation. Intraperitoneal administration of ceefourin-1 shows no important alterations in mice blood parameters, hepatic, and renal functions, nor signs of histologic damage.ConclusionsThese results show that ceefourin-1 promotes apoptosis in AML cells that is enhanced by histamine.General significance:This work indicates that ceefourin-1 represents a promising molecule that could be used alone or in combination with histamine for in vivo evaluation in acute myeloid leukemia malignancies.  相似文献   

6.
The initial response rates of advanced-stage epithelial ovarian cancer to the chemotherapeutic agents carboplatin and paclitaxel are high. However, once drug resistance develops, further chemotherapy is less effective. The objective of this study is to investigate the anti-proliferative activity of the phyto-active chemicals (PACs) oridonin and wogonin in chemo-resistant epithelial ovarian cancer cells. Primary cell cultures from the ascitic fluid of three patients at diagnosis, two patients chemo-resistant to carboplatin and paclitaxel, and one patient treated with letrozole for breast cancer were studied and compared to the ovarian cancer cell lines A2780 and PTX10, by cell viability assay (MTS). Effects on cell cycle modulation and apoptosis were examined by flow cytometry and Western blot analysis (WB). WB was further conducted to investigate protein expressions altered by PACs. The results show that IC50 of the primary cultures ranged from 0.6 to 5.4 μg/ml for oridonin and 0.3–12.7 μg/ml for wogonin. The paclitaxel-resistant cell line PTX10 was more sensitive to each of the PACs than the chemo-sensitive cell line A2780. Of particular interest is that in combination, the two PACs were synergistic in their cytotoxicity to five of six of the primary cultures and to both the cell lines (combination indices of 0.39–0.95). The inhibition is attributable to apoptosis and cell cycle modulation induced by the PACs as demonstrated in A2780 and PTX10. Up-regulation of the functional p53 protein in A2780 and down-regulation of Akt protein in PTX10 have in part contributed to the apoptosis. These findings suggest that oridonin and wogonin may have activity in ovarian cancer following its development of resistance to carboplatin and paclitaxel.  相似文献   

7.
《Phytomedicine》2014,21(4):497-505
The study investigates the antioxidant, hepatoprotective and antiproliferative effects of novel icetexane diterpenoids (ice 14) isolated from hexane extract of stem bark of Premna tomentosa. A549, HT-29, MCF-7, MDA-MB-231, A431 cells were used to assess the antiproliferative activity by MTT assay. Cell death induced by apoptosis was determined by morphological assessment studies using acridine orange/ethidium bromide staining (dual staining), mitochondrial potential measurement by JC-1 staining, and cell cycle analysis by propidium iodide staining method by Muse cell analyser. Anti oxidant activity was investigated by in vitro assays such as DPPH, nitric oxide and superoxide scavenging activities. Hepatoprotective activity was determined in vitro with HepG2 cells and in vivo by tBHP induced hepatic damage mice model. Based on the in vitro cytotoxic assays and morphological assessment studies using fluorescence microscopic study (acridine orange and ethidium bromide double staining) and mitochondrial potential measurements, it was found that ice 2 and 3 possess good antiproliferative effect via mitochondrial mediated apoptosis in human lung and breast cancer cells. Results of in vitro antioxidant studies demonstrated that ice-4 has showed good antioxidant activity. The restoration of serum levels of SGOT, SGPT and ALKP, liver GSH status and reduction or inhibition of lipid peroxidation in liver of tBHP intoxicated mice after administration of ice-4 at dose of 250 mg/kg indicated its potential use for hepatoprotective activity.  相似文献   

8.
Our previous study showed that polysaccharide (P1) from Phellinus linteus exhibits a significant inhibitive activity on human colorectal carcinoma cells (HT-29). However its novel molecular mechanism remains unknown. To obtain insights into P1’s mechanism of action, we examined its effects on cell proliferation in vitro and in vivo, cell cycle distribution, apoptosis, autophagy, and expression of several cell cycle interrelated proteins in HT-29 cells. Interestingly, we found that volume and weight of the solid tumor significantly decreased in P1 (200 mg/kg)-treated mice compared with the control. However, slightly increased the body weight of the P1 treated tumor-bearing mice, with no significant increased ALT, AST levels in serum and LPO concentration in liver and kidney indicated that P1 has no toxicity to mammals at a dose of 200 mg/kg. Furthermore, P1 caused a significantly dose-dependent increase in the S-phase cell cycle, but no apoptosis and autophagy in HT-29 cells. RT-PCR and Western blot results showed significantly down-regulated expressions of cyclin D1, cyclin E, and CDK2, as well as increased expressions of P27kip1 in P1 (100 μg/mL)-treated HT-29 cells. These results suggested that the activation of P27kip1-cyclin D1/E-CDK2 pathway is involved in P1-induced S-phase cell cycle arrest in HT-29 cells.  相似文献   

9.
Tumor resistance due to multiple mechanisms seriously hinders the efficacy of chemotherapy drugs such as paclitaxel. The most widely studied P-glycoprotein inhibitors still have limited ability to reverse resistance in the clinic. In this study, NPB304, a novel Sinenxan A (SIA) derivative, was found to significantly sensitize resistant breast cancer cells to paclitaxel in vitro and in vivo. Treatment with NPB304 increased paclitaxel-induced apoptosis in a p53-dependent manner through PARP cleavage. Importantly, NPB304 enhanced the antitumor effect of paclitaxel in resistant breast tumor xenografts in nude mice without significantly affecting weight loss. NPB304 regulated cell resistance through inhibition of MAPK pathway components, including p-ERK and p-p38. Moreover, NPB304 increased paclitaxel accumulation by affecting P-gp function. In addition to increasing Rhodamine 123 accumulation, NPB304 promoted bidirectional permeability but decreased the efflux ratio of paclitaxel in a Caco-2 monolayer model, thereby increasing the intracellular concentration of paclitaxel. Similarly, NPB304 increased the concentration of paclitaxel in the resistant tumor tissue. Hence, NPB304 is a novel compound that promotes the sensitization of resistant cells to paclitaxel through multiple mechanisms and has the potential for use in combination therapies to treat resistant breast cancer.  相似文献   

10.
目的:研究Bub1基因在肝癌中的表达以及对肝癌细胞系MHCC97-H增殖、周期和凋亡的影响。方法:利用RNA干扰技术下调肝癌细胞系MHCC97-H中Bub1的表达;qRT-PCR和Western Blot分别检测Bub1在mRNA和蛋白水平表达的变化;CCK-8实验检测肿瘤细胞增殖能力的改变;流式细胞术检测细胞周期和凋亡的变化。结果:qRT-PCR和Western Blot结果显示si-Bub1能够成功下调Bub1的表达;下调Bub1后肝癌MHCC97-H细胞的增殖能力下降(P0.05),细胞的凋亡比例升高(P0.05),细胞发生S期阻滞。结论:Bub1基因在肝癌中高表达,下调Bub1的表达后能够降低肝癌细胞的增殖能力,促进细胞凋亡,诱导细胞发生S期阻滞。  相似文献   

11.
12.

Background

We assessed the utility of the dual PI3K/mTOR inhibitor NVP-BEZ235 (BEZ235) as single agent therapy and in combination with conventional chemotherapy for thyroid cancer.

Methodology/Principal Findings

Eight cell lines from four types of thyroid cancer (papillary, follicular, anaplastic, medullary) were studied. The cytotoxicity of BEZ235 and five conventional chemotherapeutic agents alone and in combination was measured using LDH assay. Quantitative western blot assessed expression of proteins associated with cell cycle, apoptosis and signaling pathways. Cell cycle distribution and apoptosis were measured by flow cytometry. Murine flank anaplastic thyroid cancers (ATC) were treated with oral BEZ235 daily. We found that BEZ235 effectively inhibited cell proliferation of all cancer lines, with ATC exhibiting the greatest sensitivity. BEZ235 consistently inactivated signaling downstream of mTORC1. BEZ235 generally induced cell cycle arrest at G0/G1 phase, and also caused apoptosis in the most sensitive cell lines. Baseline levels of p-S6 ribosomal protein (Ser235/236) and p27 correlated with BEZ235 sensitivity. Growth of 8505C ATC xenograft tumors was inhibited with BEZ235, without any observed toxicity. Combination therapy of BEZ235 and paclitaxel consistently demonstrated synergistic effects against ATC in vitro.

Conclusions

BEZ235 as a single therapeutic agent inhibits thyroid cancer proliferation and has synergistic effects in combination with paclitaxel in treating ATC. These findings encourage future clinical trials using BEZ235 for patients with this fatal disease.  相似文献   

13.
Ionizing radiation is classified as a potent carcinogen, and its injury to living cells, in particular to DNA, is due to oxidative stress enhancing apoptotic cell death. Our present study aimed to characterize and semi-quantify the radiation-induced apoptosis in CNS and the activity of Mentha extracts as neuron-protective agent. Our results through flow cytometry exhibited the significant disturbance and arrest in cell cycle in % of M1: SubG1 phase, M2: G0/1 phase of diploid cycle, M3: S phase and M4: G2/M phase of cell cycle in brain tissue (p < 0.05). Significant increase in % of apoptosis and P53 protein expression as apoptotic biomarkers were coincided with significant decrease in Bcl2 as an anti-apoptotic marker. The biochemical analysis recorded a significant decrease in the levels of reduced glutathione, superoxide dismutase, deoxyribonucleic acid (DNA) and ribonucleic acid contents. Moreover, numerous histopathological alterations were detected in brain tissues of gamma irradiated mice such as signs of chromatolysis in pyramidal cells of cortex, nuclear vacuolation, numerous apoptotic cell, and neural degeneration. On the other hand, gamma irradiated mice pretreated with Mentha extract showed largely an improvement in all the above tested parameters through a homeostatic state for the content of brain apoptosis and stabilization of DNA cycle with a distinct improvement in cell cycle analysis and antioxidant defense system. Furthermore, the aforementioned effects of Mentha extracts through down-regulation of P53 expression and up-regulation of Bcl2 domain protected brain structure from extensive damage. Therefore, Mentha extract seems to have a significant role to ameliorate the neuronal injury induced by gamma irradiation.  相似文献   

14.
Introduction: Broccoli (Brassica oleracea) is well known for its properties as an anticancer, antioxidant, and scavenger of free radicals. However, its benefits in enhancing spermatogenesis have not been well established.Objective: To study broccoli aqueous extract effects on sperm factors and the expression of genes Catsper1, Catsper2, Arl4a, Sox5, and Sox9 in sperm factors in mice.Material and methods: Male mice were divided randomly into six groups: (1) Control; (2) cadmium (3 mg/kg of mouse body weight); (3) orally treated with 200 µl broccoli aqueous extract (1 g ml-1); (4) orally treated with 400 µl of broccoli aqueous extract; (5) orally treated with 200 broccoli aqueous extract plus cadmium, and (6) orally treated with 400 µl of broccoli aqueous extract plus cadmium. We analyzed the sperms factors and Catsper1, Catsper2, Arl4a, Sox5, and Sox9 gene expression.Results: An obvious improvement in sperm count and a slight enhancement in sperm motility were observed in mice treated with broccoli extract alone or with cadmium. Sperm viability was reduced by broccoli extract except for the 200 µl dose with cadmium, which significantly increased it. Interestingly, Arl4a gene expression increased in the 400 µl broccoli- treated group. Likewise, the Arl4a mRNA level in mice treated with cadmium and 200 µl of broccoli extract was higher than in the cadmium-treated mice. Furthermore, broccoli extract enhanced the mRNA level of Catsper2 and Sox5 genes in mice treated with 200 µl and 400 µl broccoli extract plus cadmium compared with the group treated solely with cadmium.Conclusion: The higher sperm count in broccoli-treated mice opens the way for the development of pharmaceutical products for infertile men.  相似文献   

15.
Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML) cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.  相似文献   

16.
Cancer chemopreventive response to D,L-sulforaphane (SFN), a synthetic racemic analogue of broccoli constituent L-sulforaphane, is partly attributable to apoptosis induction, but the mechanism of cell death is not fully understood. The present study demonstrates a critical role for adapter protein p66(Shc) in SFN-induced apoptosis. Immortalized mouse embryonic fibroblasts (MEF) derived from p66(shc) knockout mice were significantly more resistant to SFN-induced apoptosis, collapse of mitochondrial membrane potential, and reactive oxygen species (ROS) production compared with MEF obtained from the wild-type mice. Notably, a spontaneously immortalized and non-tumorigenic human mammary epithelial cell line (MCF-10A) was resistant to SFN-induced ROS production and apoptosis. Stable overexpression of manganese superoxide dismutase in MCF-7 and MDA-MB-231 human breast cancer cells conferred near complete protection against SFN-induced apoptosis and mitochondrial membrane potential collapse. SFN treatment resulted in increased S36 phosphorylation and mitochondrial translocation of p66(shc) in MDA-MB-231 and MCF-7 cells, and SFN-induced apoptosis was significantly attenuated by RNA interference of p66(shc) in both cells. SFN-treated MDA-MB-231 and MCF-7 cells also exhibited a marked decrease in protein level of peptidyl prolyl isomerase (Pin1), which is implicated in mitochondrial translocation of p66(shc) . However, stable overexpression of Pin1 failed to alter proapoptotic response to SFN at least in MCF-7 cells. Finally, SFN-induced S36 phosphorylation of p66(Shc) was mediated by protein kinase Cβ (PKCβ), and pharmacological inhibition of PKCβ significantly inhibited apoptotic cell death resulting from SFN exposure. In conclusion, the present study provides new insight into the mechanism of SFN-induced apoptosis involving PKCβ -mediated S36 phosphorylation of p66(shc).  相似文献   

17.
Due to its potent anti-tumor activity, well-investigated pharmacokinetic properties and safety profile, disulfiram (DSF) has emerged as a promising candidate for drug repurposing in cancer therapy. Although several molecular mechanisms have been proposed for its anti-cancer effects, the precise underlying mechanisms remain unclear. In the present study, we showed that DSF inhibited proliferation of cancer cells by inducing reactive oxygen species (ROS) production, a G1 cell cycle arrest and autophagy. Moreover, DSF triggered apoptosis via suppression of the anti-apoptotic protein survivin.To elucidate the mechanisms for the anti-proliferative activities of DSF, we applied a 2-DE combined with MALDI-TOF-MS/MS analysis to identify differentially expressed proteins in breast cancer cells upon treatment with DSF. Nine differentially expressed proteins were identified among which, three candidates including calmodulin (CaM), peroxiredoxin 1 (PRDX1) and collagen type I alpha 1 (COL1A1) are involved in the regulation of the AKT signaling pathway. The results of western blot analysis confirmed that DSF inhibited p-AKT, suggesting that DSF induces its anti-tumor effects via AKT blockade. Moreover, we found that DSF increased the mRNA levels of FOXO1, FOXO3 and FOXO4, and upregulated the expression of their target genes involved in G1 cell cycle arrest, apoptosis and autophagy. Finally, DSF potentiated the anti-proliferative effects of well-known chemotherapeutic agents such as arsenic trioxide (ATO), doxorubicin, paclitaxel and cisplatin. Altogether, these findings provide mechanistic insights into the anti-growth activities of DSF.  相似文献   

18.
Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation.  相似文献   

19.
Sarcophine-diol (SD), a structural modifications of sarcophine, has shown chemopreventive effects on 7,12-dimethylbenz(a)anthracene-initiated and 12-O-tetradecanoylphorbol-13-acetate-promoted skin tumor developments in mice. Tumorigenesis is associated with uncontrolled cell growth and loss of apoptosis. In the present study, the effects of SD on cell growth and apoptosis in human epidermoid carcinoma A431 cells were determined to assess whether SD could inhibit cell growth and/or induce apoptosis, thus elucidating possible mechanism of action. MTT assay was used for cell viability; bromodeoxyuridine incorporation assay was used for cell proliferation; fluorescence-activated cell sorting analysis of annexin V/propidium iodide staining and TUNEL assay were used for determining apoptotic cells; Western blot analysis was used for determining the expression of caspase-3 and colorimetric caspase activity assays were used for determination of caspase-3, -8, and -9 activity. The results showed that SD treatment at concentration of 200 to 600 µM resulted in a concentration-dependent decrease in cell viability and cell proliferation in A431 cells, which largely inhibited cell growth. Sarcophine-diol treatment induced a strong apoptosis and significantly (P < .05) increased DNA fragmentation in A431 cells. Furthermore, SD treatment significantly (P < .05) increased the activity and expression of caspase-3 through activation of upstream caspase-8 in A431 cells rather than the activation of caspase 9. Sarcophine-diol treatment is relatively much less cytotoxic in monkey kidney normal CV-1 cells. These results suggest that SD decreases cell growth and induces apoptosis through caspase-dependent extrinsic pathway in A431 cells, and this may contribute to its overall chemopreventive effects in mouse skin cancer models.  相似文献   

20.
BackgroundPrevious studies have suggested an important role for N6-methyladenosine (m6A) modification in the proliferation of glioma cells. N6, 2′-O-dimethyladenosine (m6Am) is another methylated form affecting the fate and function of most RNA. PCIF1 has recently been identified as the sole m6Am methyltransferase in mammalian mRNA. However, it remains unknown about the role of PCIF1 in the growth and survival of glioma cells.MethodsWe constructed glioma cell lines that stably downregulated/upregulated PCIF1, established intracranial xenograft models using these cell lines, and employed the following methods for investigations: CCK-8, EdU, colony formation, flow cytometry, qRT-PCR, Western blot, and immunohistochemistry.FindingsDownregulating PCIF1 promoted glioma cell proliferation, while overexpressing PCIF1 showed the opposite effects. Overexpression of PCIF1 blocked cell cycle progression and induced apoptosis in glioma cells, which was further confirmed by alterations in the expression of cell checkpoint proteins and apoptotic markers. Interestingly, disruption of PCIF1 methyltransferase activity slightly reversed the effect of PCIF1 overexpression on cell proliferation, but had no significant reversal effects on cell cycle progression or apoptosis. Knockdown of PCIF1 promoted the growth of gliomas, while overexpressing PCIF1 inhibited tumor growth and prolonged the survival time of tumor-bearing mice. In addition, the mRNA and protein levels of PCIF1 were gradually decreased with the increase of WHO grade in glioma tissues, but there was no significant correlation with patient survival.InterpretationThese results indicated that PCIF1 played a suppressing role in glioma growth and survival, which may not entirely depend on its methyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号