共查询到20条相似文献,搜索用时 0 毫秒
1.
《Carbohydrate research》1987,162(2):171-179
The crystal and molecular structures of methyl 2,4,6-tri-O-pivaloyl-α-d-glucopyranoside (1), methyl 4,6-O-(R)-benzylidene-2-O-pivaloyl-α-d-glucopyranoside (2), and methyl 4,6-O-(R)-benzylidene-2,3-di-O-pivaloyl-α-d-glucopyranoside (3) were determined by X-ray analysis. Crystals of 1 are orthorhombic, space group P212121 with the unit cell a = 13.026(2), b = 16.832, c = 11.929(2) Å, Z = 4. Crystals of 2 are monoclinic, space group P21. The unit-cell parameters are a = 6.519(1), b = 14.664(4), c = 10.635(4) Å, β = 93.18(1)°, Z = 2. Crystals of 3 are orthorhombic, space group P212121 with a = 10.006(3), b = 13.874(3), c = 18.527(5) Å, Z = 4. The structures were solved by MULTAN and refined by a full-matrix procedure to final values of R = 0.084 (1), 0.048 (2), and 0.069 (3). The pyranose ring in each compound adopts the 4C1 conformation. The 1,3-dioxane rings in 2 and 3 show a chair conformation. The molecular packing in 1 is through the hydrogen bonds involving HO-3 and the 6-O-pivaloyl carbonyl group [HO-3 ⋯ O-9, 2.855(8) Å], which connect the molecules into a chain along . The endocyclic oxygen atom is involved in an intermolecular hydrogen-bond with HO-3 [2.848(4) Å], joining molecules of 2 into the chains along . There are no free hydroxyl groups in 3 and molecular packing reflects van der Waals interactions only. 相似文献
2.
E. D. Chrysina N. G. Oikonomakos S. E. Zographos M. N. Kosmopoulou N. Bischler D. D. Leonidas 《Biocatalysis and Biotransformation》2013,31(4-5):233-242
AbstractThe catalytic site of glycogen phosphorylase (GP) is currently under investigation as a target for inhibition of hepatic glycogenolysis under high glucose conditions. Three D-glucopyranosyl analogues, C-(1-azido-α-D-glucopyranosyl) formamide, C-(1-acetamido-α-D-glucopyranosyl) formamide, and C-(1-hydroxy-β-D-glucopyranosyl) formamide, were recognised as moderate competitive inhibitors of muscle glycogen phosphorylase b (GPb) [with respect to α-D-glucose 1-phosphate (Glc-1-P)] with Ki values of 1.80 (±0.2) mM, 0.31 (±0.01) mM, and 0.88 (±0.04) mM, respectively. In order to elucidate the structural basis of inhibition, we determined the structure of muscle GPb complexed with the three compounds at 2.1, 2.06 and 2.0 Å resolution, respectively. The complex structures revealed that the inhibitors can be accommodated in the catalytic site of T-state GPb with very little change of the tertiary structure, and provide a rationalisation for understanding potency of the inhibitors. The glucopyranose moiety makes the standard hydrogen bonds and van der Waals contacts as observed in the GPb-glucose complex, while the substituent groups in the α- and β-position of the C1 atom make additional hydrogen bonding and van der Walls interactions to the protein. 相似文献
3.
Shigehiro Kamitori Atsushi Ueda Yasuhiro Tahara Hiromi Yoshida Tomohiko Ishii Jun’ichi Uenishi 《Carbohydrate research》2011,(9):1182
The crystal structures of α-d-glucopyranosyl β-d-psicofuranoside and α-d-galactopyranosyl β-d-psicofuranoside were determined by a single-crystal X-ray diffraction analysis, refined to R1 = 0.0307 and 0.0438, respectively. Both disaccharides have a similar molecular structure, in which psicofuranose rings adopt an intermediate form between 4E and 4T3. Unique molecular packing of the disaccharides was found in crystals, with the molecules forming a layered structure stacked along the y-axis. 相似文献
4.
Bujacz A Jedrzejczak-Krzepkowska M Bielecki S Redzynia I Bujacz G 《The FEBS journal》2011,278(10):1728-1744
We solved the 1.8 ? crystal structure of β-fructofuranosidase from Bifidobacterium longum KN29.1 - a unique enzyme that allows these probiotic bacteria to function in the human digestive system. The sequence of β-fructofuranosidase classifies it as belonging to the glycoside hydrolase family 32 (GH32). GH32 enzymes show a wide range of substrate specificity and different functions in various organisms. All enzymes from this family share a similar fold, containing two domains: an N-terminal five-bladed β-propeller and a C-terminal β-sandwich module. The active site is located in the centre of the β-propeller domain, in the bottom of a 'funnel'. The binding site, -1, responsible for tight fructose binding, is highly conserved among the GH32 enzymes. Bifidobacterium longum KN29.1 β-fructofuranosidase has a 35-residue elongation of the N-terminus containing a five-turn α-helix, which distinguishes it from the other known members of the GH32 family. This new structural element could be one of the functional modifications of the enzyme that allows the bacteria to act in a human digestive system. We also solved the 1.8 ? crystal structure of the β-fructofuranosidase complex with β-D-fructose, a hydrolysis product obtained by soaking apo crystal in raffinose. 相似文献
5.
Crystal structures of glycoside hydrolase family 51 α-L-arabinofuranosidase from Thermotoga maritima
Im DH Kimura K Hayasaka F Tanaka T Noguchi M Kobayashi A Shoda S Miyazaki K Wakagi T Fushinobu S 《Bioscience, biotechnology, and biochemistry》2012,76(2):423-428
α-L-Arabinofuranosidase from the hyperthermophilic bacterium Thermotoga maritima (Tm-AFase) is an extremely thermophilic enzyme belonging to glycoside hydrolase family 51. It can catalyze the transglycosylation of a novel glycosyl donor, 4,6-dimethoxy-1,3,5-triazin-2-yl (DMT)-β-D-xylopyranoside. In this study we determined the crystal structures of Tm-AFase in substrate-free and complex forms with arabinose and xylose at 1.8-2.3 ? resolution to determine the architecture of the substrate binding pocket. Subsite -1 of Tm-AFase is similar to that of α-L-arabinofuranosidase from Geobacillus stearothermophilus, but the substrate binding pocket of Tm-AFase is narrower and more hydrophobic. Possible substrate binding modes were investigated by automated docking analysis. 相似文献
6.
Highlights? Structures of β1AR bound to the biased agonists bucindololol and carvedilol ? The biased agonists form unique contacts with β1AR not seen with other antagonists ? The structures explain the pharmacological differences in the Arg389Gly polymorphism 相似文献
7.
Glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidases (GH20s) catalyze the hydrolysis of glycosidic linkages in glycans, glycoproteins and glycolipids. The diverse substrates of GH20s account for their various roles in many important bioprocesses, such as glycoprotein modification, glycoconjugate metabolism, gamete recognition and chitin degradation in fungal cell walls and arthropod exoskeletons. Defects in human GH20s cause lysosomal storage diseases, Alzheimer's disease and osteoarthritis. Similarly, lower levels of GH20s arrest arthropod molting. Although GH20s are promising targets for drug and agrochemical development, designing bioactive molecules to target one specific enzyme is challenging because GH20s share a conserved catalytic mechanism. With the development of structural biology, the last two decades have witnessed a dramatic increase in crystallographic investigations of liganded and unliganded GH20s, providing core information for rational molecular designs. This critical review summarizes recent research advances in GH20s, with a focus on their structural basis of substrate specificity as well as on inhibitor design. As more crystal structures of targeted GH20s are determined and analyzed, dynamics of their catalysis and inhibition will also be elucidated, which will facilitate the development of new drugs, pesticides and agrochemicals. 相似文献
8.
9.
10.
C. Bagnéris O.A. Bateman C.E. Naylor N. Cronin N.H. Keep 《Journal of molecular biology》2009,392(5):1242-1268
Small heat shock proteins (sHsps) are a family of large and dynamic oligomers highly expressed in long-lived cells of muscle, lens and brain. Several family members are upregulated during stress, and some are strongly cytoprotective. Their polydispersity has hindered high-resolution structure analyses, particularly for vertebrate sHsps. Here, crystal structures of excised α-crystallin domain from rat Hsp20 and that from human αB-crystallin show that they form homodimers with a shared groove at the interface by extending a β sheet. However, the two dimers differ in the register of their interfaces. The dimers have empty pockets that in large assemblies will likely be filled by hydrophobic sequence motifs from partner chains. In the Hsp20 dimer, the shared groove is partially filled by peptide in polyproline II conformation. Structural homology with other sHsp crystal structures indicates that in full-length chains the groove is likely filled by an N-terminal extension. Inside the groove is a symmetry-related functionally important arginine that is mutated, or its equivalent, in family members in a range of neuromuscular diseases and cataract. Analyses of residues within the groove of the αB-crystallin interface show that it has a high density of positive charges. The disease mutant R120G α-crystallin domain dimer was found to be more stable at acidic pH, suggesting that the mutation affects the normal dynamics of sHsp assembly. The structures provide a starting point for modelling higher assembly by defining the spatial locations of grooves and pockets in a basic dimeric assembly unit. The structures provide a high-resolution view of a candidate functional state of an sHsp that could bind non-native client proteins or specific components from cytoprotective pathways. The empty pockets and groove provide a starting model for designing drugs to inhibit those sHsps that have a negative effect on cancer treatment. 相似文献
11.
Methyl α- and β-pyranosides of D-galactose, D-glucose, and D-mannose have been oxidized with bromine in aqueous solution at various pH values. The resulting keto glycosides were converted into their more-stable O-methyloxime derivatives which were characterized by spectroscopy and chromatography. Oxidation at a ring carbon atom where the hydrogen is axial is hindered by bulky substituents in syn (i.e., a 1,3) diaxial relationship. Thus, the aglycon group in the α anomers protects position 3, the axial HO-4 in galactopyranosides protects position 2, and the axial HO-2 in mannopyranosides protects position 4 from oxidation. 相似文献
12.
Françoise Dacheux 《Cell and tissue research》1981,215(1):87-101
Summary The peroxidase-antiperoxidase immunocytochemical technique was used to identify the ACTH/endorphin cells in the porcine pituitary at the ultrastructural level and to determine the precise subcellular localization of the pro-ACTH/endorphin fragments. The cells display different aspects: 1) large, regular shapes with numerous and large secretory granules; 2) small, irregular and angular shapes with small granules aligned along the periphery of the cell; and 3) intermediate forms. The presence of and -endorphin not only in the same cells but also in the same secretory granules that contain ACTH and -LPH clearly indicates that both the precursor or its fragments and the abovementioned peptides are stored in the same granules and released simultaneously by the corticotropic cells. The presence of FSH in some corticotropic cells is also discussed.Abbreviations used in this Article
ACTH
corticotropin
-
-MSH
-melanotropin (ACTH I–I3)
-
CLIP
corticotropin-like intermediate lobe peptide (ACTH 18–39)
-
-LPH
-lipotropin
-
-MSH
-melanotropin (-LPH 41–58); -endorphin (-LPH 61–91); -endorphin (-LPH 61–76) 相似文献
13.
Reaction of β-maltotriose hendecaacetate with phosphorus pentachloride gave 2′,2″,3,3′,3″,4″,6,6′,6″,-nona-O-acetyl-(2)-O-trichloroacetyl-β-maltotriosyl chloride (2) which was isomerized into the corresponding α anomer (8). Selective ammonolysis of 2 and 8 afforded the 2-hydroxy derivatives 3 and 9, respectively; 3 was isomerized into the α anomer 9. Methanolysis of 2 and 3 in the presence of pyridine and silver nitrate and subsequent deacetylation gave methyl α-maltotrioside. Likewise, methanolysis and O-deacetylation of 9 gave methyl β-maltotrioside which was identical with the compound prepared by the Koenigs—Knorr reaction of 2,2′,2″,3,3′,3″,4″,6,6′,6″-deca-O-acetyl-α-maltotriosyl bromide (12) with methanol followed by O-deacetylation. Several substituted phenyl β-glycosides of maltotriose were also obtained by condensation of phenols with 12 in an alkaline medium. Alkaline degradation of the o-chlorophenyl β-glycoside decaacetate readily gave a high yield of 1,6-anhydro-β-maltotriose. 相似文献
14.
The conformational flexibility of β-gentiobiose has been studied by using convergent energy minimisation in a new force-field, with relaxation of all degrees of freedom. Twenty-four local minima are found in the φ,ψ,ω-space. The free-enthalpy differences are 1.7, 3.7, 5.1, 5.3, and from 5.9 to 29.4 kJ.mol?1 above the lowest minimum, corresponding to a distribution of 40:20:9:5:5:21 at 298 K. Each minimum is surrounded by a manifold of minimum conformers that differ only in exocyclic torsions. The average conformation of β-gentiobiose is not fully extended, but to some degree coiled. Three conformers are shown in stereo. 相似文献
15.
The synucleins are a family of natively unstructured proteins consisting of α-, β-, and γ-synuclein which are primarily expressed in neurons. They have been linked to a wide variety of pathologies, including neurological disorders, such as Parkinson’s disease (α-synuclein) and dementia with Lewy bodies (α- and β-synuclein), as well as various types of cancers (γ-synuclein). Self-association is a key pathological feature of many of these disorders, with α-synuclein having the highest propensity to form aggregates, while β-synuclein is the least prone. Here, we used a combination of fluorescence correlation spectroscopy and single molecule Förster resonance energy transfer to compare the intrinsic dynamics of different regions of all three synuclein proteins to investigate any correlation with putative functional or dysfunctional interactions. Despite a relatively high degree of sequence homology, we find that individual regions sample a broad range of diffusion coefficients, differing by almost a factor of four. At low pH, a condition that accelerates aggregation of α-synuclein, on average smaller diffusion coefficients are measured, supporting a hypothesis that slower intrachain dynamics may be correlated with self-association. Moreover, there is a surprising inverse correlation between dynamics and bulkiness of the segments. Aside from this observation, we could not discern any clear relationship between the physico-chemical properties of the constructs and their intrinsic dynamics. This work suggests that while protein dynamics may play a role in modulating self-association or interactions with other binding partners, other factors, particularly the local cellular environment, may be more important. 相似文献
16.
Two europium α-thiophene carboxylic acid (HTPA) compounds, coordination polymer Eu(TPA)3(HTPA)2 (1) (TPA=α-thiophene carboxylate) and supramolecular compound Eu(TPA)3(H2O)3 · 0.5H2O (2) with luminescence and triboluminescence, have been synthesized and structurally characterized. In 1 each europium is bridged by six oxygen atoms from six carboxylates and coordinated with two carboxyl oxygen atoms from two α-thiophene carboxylic acid molecules, resulting in a coordination number of eight to Eu. For 2 each europium is chelated by six oxygen atoms from six carboxylates and coordinated with three oxygen atoms from three coordinated water generating a coordination number nine to Eu; A supramolecular compound is constructed through hydrogen bonds. Both 1 and 2 display strong characteristic emission of Eu3+ ion radiated by UV light and produce twinkling red light with an external force. 相似文献
17.
The activities of -glucosidase, -glucosidase, and -galactosidase were studied during the isolation and purification of lectins from Azospirillum brasilenseSp7 and Azospirillum lipoferum59b cells. These enzymatic activities were revealed in crude extracts of surface proteins, protein fraction precipitated with ammonium sulfate or ethanol–acetone mixture, and protein fraction obtained by gel filtration on Sephadex G-75. The distribution of the enzymes between different protein fractions varied for the azospirilla studied. The cofunction of the A. brasilenseSp7 lectin and -galactosidase on the cell surface is assumed. A strong interaction between the A. lipoferum59b lectin and glucosidases was revealed. The lectin from A. lipoferum59b may possess saccharolytic activity. 相似文献
18.
19.
Toshio Omori Yoshifumi Jigami Yasuji Minoda 《Bioscience, biotechnology, and biochemistry》2013,77(2):409-415
An unidentified bacterial strain S107B1, isolated from soil by use of isopropylbenzene as a carbon source, was shown to bring about oxidation of α-methylstyrene and β-methylstyrene,One of the oxidation products produced from α-methylstyrene was identified as the new compound, (—)-cis-23-dihydroxy-1-isopropenyl-6-cyclohexene.The same strain S107B1 also oxidized β-methylstyrene and produced 3-phenylpropionaldehyde and benzoic acid.From these results, the existence of reductive step for the aerobic degradation of these aromatic hydrocarbons by this strain was made clear. The initial attack on these aromatic hydrocarbons and a cyclohexenediol compound formed from α-methylstyrene were discussed. 相似文献