首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
The responses of cortical cells to gratings and bars were compared. The excitatory and inhibitory on-and off-zones of a simple cell are composed of on- and off-subfields of CGL. Any zone is formed by an opponent pair of subfields one of which gives an excitatory effect, the other — inhibitory. Such organization assumes the linear properties of a simple field. The deviations from linearity are due to spatial dis-placements of the subfields, heterogeneity of subfields, or the absence of one subfield in the opponent pair. Subfields may be both phasic and tonic, even in the same RF. Analysis of the most common type of a complex cell with modulated responses against unmodulated background shows that a mask eliminating stimulation of any half of the RF causes (according to the theory of filtres) increasing the bandwidth due to the increase or the appearance of responses to side low and high frequencies. The modulated components of the responses from both halves of the RF are out of phase. Analysis of this fact and the responses to thin bars suggests that a complex field is formed by linear and nonlinear subsystems converging onto output neuron. Other types of complex fields are organized by different combinations of subsystems. Limited in area by masking the RF responds to much higher spatial frequencies than the whole RF. The optimal frequency in two-dimensional spatial frequency characteristics of the RF does not change with orientation. Simple RFs and a part of complex RF calculate the amplitude and the phase of the stimulus, the other part of complex RFs (with unmodulated response) calculate only amplitude. Given all this, the RFs are grating filters of spatial frequency.  相似文献   

3.
Summation was studied by a procedure close to that used in producing a conditioned reflex. Subthreshold electrical stimulation, which gave rise to a dominant focus in the cat motor cortex, was applied after photic stimulation. Under these conditions, summation occurred both when the two stimuli were applied simultaneously and when the weaker stimulus preceded the stronger one by a very short interval (tens of milliseconds). Increased excitability was characteristic of the dominant focus. An excessive increase in excitability weakened the summation reflex. Electrographically, this type of conditioning was reflected in an increase in amplitude of the primary negative wave of the direct cortical response, recorded in the motor area at a distance of 2–3 mm from the stimulation point. It is concluded from analysis of this electrophysiological phenomenon and comparison of the results with data in the literature that different mechanisms are involved in the summation process during different sequences of stimulation ("photic+electrical" and "electrical+photic").Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 293–302, November–December, 1969.  相似文献   

4.
By the third postnatal week, intrinsic developmental programs have established a framework within the cat visual system; this will be used to guide the course of subsequent experience-dependent development. Key elements in this framework are precociously mature cells in visual cortex area 17. These orientation-selective cells are predominantly first-order neurons, they are concentrated in layers IV and VI of area 17, most of them are activated monocularly, many may receive their direct excitatory input from lateral geniculate nucleus X cells, and the distribution of their preferred orientations is biased toward horizontal and vertical. Between the third and the sixth postnatal week, most of the remaining cells in area 17 develop orientation selectivity; this extension of orientation selectivity is blocked or delayed if kittens are deprived of normal patterned visual stimulation. Furthermore, exposure to a limited range of stimulus orientations can lead to an increase in the proportion of orientation-selective cells, and the range of orientation preferences that the cells acquire is restricted by the range of orientations to which the animal is exposed. This occurs with no apparent change in the physiology or morphology of intrinsically selective area 17 cells. Thus selective exposure may have its effect by influencing the connections between the intrinsically selective cells and higher-order neurons in area 17. Experience-dependent changes in the visual system may function to "fine-tune" sensory processing and thus optimize the system's response to the dominant features of the environment. This experience-dependent process could help the young animal to focus its "attention" on those features of its environment that are critical to its survival.  相似文献   

5.
A suggestion about the leading role of GABA-induced intracortical inhibition in the dynamics of orientation tuning (OT) of the cat striate cortical neurons was tested in acute experiments before and during the local blockade of their inhibition by iontophoretic application of bicucculine. In the course of the investigation of these dynamics, with the use of a temporal scanning method, two types of neurons differing in the inhibition blockade-induced OT changes were found. In the neurons of the first type (57%), bicuculline induced the OT dynamics or enhanced it, if it pre-existed before the bicuculline application. In the neurons of the second type (43%), bicuculline strongly reduced or eliminated the dynamic shift of a preferred orientation. These results mean that under normal conditions the inhibition stabilizes and sharpens OT in some cells, while in other cells, in contrast, it causes the OT dynamics. The following mechanisms may underlie the observed effects: an elimination of the inhibition originating from lateral non-isoorientational excitatory inputs of a receptive field; an inhibition of these inputs via the adjacent interneurons activated by a powerful discharge of the examined neuron; a long-term afterhyperpolarization of the neuron, and the dynamics of the excitatory and inhibitory zones of the receptive field.Neirofiziologiya/Neurophysiology, Vol. 27, No. 2, pp. 100–109, March–April, 1995.  相似文献   

6.
The principal target of lateral geniculate nucleus in the cat visual cortex is the stellate neurons of layer 4. In previously reported work with intracellular recording and extracellular stimulation in slices of visual cortex, three general classes of fast excitatory synaptic potentials (EPSPs) in layer 4a spiny stellate neurons were identified. One of these classes, characterized by large and relatively invariant amplitudes (mean 1.7 mV, average coefficient of variation (CV) 0.083) were attributed to the action of geniculate axons because, unlike the other two classes, they could not be matched by intracortical inputs, using paired recording. We have examined in detail the properties of this synaptic input in twelve examples, selecting for study those EPSPs where there was secure extracellular stimulation of the single fibre input to a pair of stimuli 50 ms apart. In our analysis, we conclude that the depression that these inputs show to the second stimulus is entirely postsynaptic, since the evidence strongly suggests that the probability of transmitter release at the synaptic site(s) remains 1.0 for both stimuli. We argue that the most plausible explanation for this postsynaptic depression is a reduction in the average probability of opening the synaptic channels. Using a simple biochemical analysis (c.f. Sigworth plot), it is then possible to calculate the number of synaptic channels and their probability of opening, for each of the 12 connections. The EPSPs had a mean amplitude of 1.91 mV (+/- 1.3 mV SD) and a mean CV of 0.067 (+/- 0.022). The calculated number of channels ranged from 20 to 158 (59.4 +/- 48.7) and their probability of opening to the first EPSP had an average of 0.83 (+/- 0.09), with an average depression of the probability to 0.60 for the second EPSP. Geniculate afferents also terminate in layer 6. Intracellular recordings were also made in the upper part of this layer and a total of 51 EPSPs were recorded from pyramidal cells of three principal types. Amongst this dataset we sought EPSPs with similar properties to those characterized in layer 4a. Three examples were found, which is a much lower percentage (6%) than the incidence of putative geniculate EPSPs found in layer 4a (42%).  相似文献   

7.
We analyzed striate cortex electrocorticograms of 12 cats in the following states: at rest with eyes closed and with eyes open; after light electrical stimulation of the ears; drowsiness; opening of the eyes after drowsiness; narcotic sleep. Spectral and periodometric analyses of the ECOG revealed state-dependent differences in power spectra from cats in two frequency bands (2.8–5.0 and 13.8–20.8 Hz). It is suggested that the ratio of ECOG power spectra in these frequency bands can be used to evaluate brain activation in cats.Vilnius University, Lithuania. Translated from Neirofiziologiya, Vol. 24, No. 6, pp. 672–678, November–December, 1992.  相似文献   

8.
K N Dudkin  I V Chueva 《Biofizika》1983,28(2):315-319
Three types of receptive fields (RF) were revealed in the studies of mechanisms of spatial-frequency filtration in the cat's visual cortex. The spatial-frequency selectivity of RF of the first type (mainly simple fields) manifests itself in a narrow range of the gratings orientations close to the preferable one, being absent beyond this range. Two other types of RF (mainly complex and hypercomplex ones) are selective to the spatial frequencies at any gratings orientation. At such gratings orientation RF of one type respond with frequency-selective inhibition, RF of another--with frequency-selective excitation. For the majority of RF the two-dimensional spatial-frequency selectivity is realized at short lengths of gratings at which the orientation selectivity of RF is not manifested. A conclusion is drawn that the twodimensional spatial-frequency filters are not Fourier filters.  相似文献   

9.
10.
Coverage and the design of striate cortex   总被引:2,自引:0,他引:2  
Hubel and Wiesel (1977) suggested that ocular dominance and orientation columns in the macaque monkey striate cortex might be bands of uniform width that intersected orthogonally. They pointed out that if this were the case, there would be an equal allocation of cells of different orientation preference to each eye and to each point in visual space. However, orientation and ocular dominance columns have a more complex structural organization than is implied by this model: for example, iso-orientation domains do not intersect ocular dominance stripes at right angles and the two columnar systems have different periodicities. This raises the question as to how well the striate cortex manages to allocate equal numbers of neurons of different orientation preference to each eye and to each region of visual space, a factor referred to here as coverage. This paper defines a measure of uniformity of coverage, c, and investigates its dependence on several different parameters of columnar organisation. Calculations were done first using a simplified one-dimensional model of orientation and ocular dominance columns and were then repeated using more realistic two-dimensional models, generated with the algorithms described in the preceding paper (Swindale 1991). Factors investigated include the relative periodicities of the two columnar systems, the size of the cortical point image, the width of orientation tuning curves, whether columns are spatially anisotropic or not, and the role of the structural relationships between columns described by Blasdel and Salama (1986). The results demonstrate that coverage is most uniform when orientation hypercolumns are about half the size of ocular dominance hypercolumns. Coverage is most uneven when the hypercolumns are the same size, unless they are related in the way described by Blasdel and Salama, in which case coverage gets only slightly worse as the size ratio (ori/od) increases above 0.5. The minimum diameter of cortical point image that ensures reasonably uniform coverage is about twice the size of an ocular dominance hypercolumn i.e. about 1.5–2.0 mm.  相似文献   

11.
12.
13.
14.
15.
16.
A nerve net model for the visual cortex of higher vertebrates is presented. A simple learning procedure is shown to be sufficient for the organization of some essential functional properties of single units. The rather special assumptions usually made in the literature regarding preorganization of the visual cortex are thereby avoided. The model consists of 338 neurones forming a sheet analogous to the cortex. The neurones are connected randomly to a retina of 19 cells. Nine different stimuli in the form of light bars were applied. The afferent connections were modified according to a mechanism of synaptic training. After twenty presentations of all the stimuli individual cortical neurones became sensitive to only one orientation. Neurones with the same or similar orientation sensitivity tended to appear in clusters, which are analogous to cortical columns. The system was shown to be insensitive to a background of disturbing input excitations during learning. After learning it was able to repair small defects introduced into the wiring and was relatively insensitive to stimuli not used during training.  相似文献   

17.
Characteristics of temporal summation in neurons of area 17 of the visual cortex in acute experiments on unanesthetized, immobilized cats. During light adaptation, extracellular spike responses of these neurons to optimal local photic stimuli of varied duration — from 5 to 1000 msec — were studied. The critical duration of temporal summation of excitation, determined by the supraliminal method using the criterion of maximal discharge frequency in the first volley of the spike response, varied in different cells from 5 to 100 msec; neurons with summation lasting 15–100 msec (mean 31.45±5.67 msec) were found most frequently. Neurons with central receptive fields differed significantly from cellswith peripheral fields in the shorter critical duration of temporal summation, the lower frequency of spontaneous discharges, and the shorter duration of the first volley of the response. Summation time in neurons with simple receptive fields was significantly shorter than in neurons with complex receptive fields. The results of these experiments are compared with data in the literature obtained by the study of retinal and lateral geniculate neurons in cats and are discussed from the stand-point of division of ascending afferent projections in the visual system into X-and Y-groups (Ia and Ib).Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 345–352, July–August, 1981.  相似文献   

18.
Cortical stratification of neurons forming callosal projections to the primary cortical area (AI) was investigated in cats using horseradish peroxidase axonal transport techniques. The population of area AI callosal neurons was found to be composed of several groups of cells. The group comprising around 60% of all callosal neurons of this area consists of large layer III pyramidal neurons. Callosal neurons belonging to this layer have a mean perikaryon profile area of 261.8±8.2 µm2; they account for 22% of all cells found in the layer. The second group, comprising 27% of all area AI callosal neurons, was largely made up of large layer V and VI cells; these could not be classed as pyramidal neurons due to the shape of their somata and the geometry of their dendritic arborization. Perikaryon profile in these nonpyramidal neurons occupied an area of 250.3±8.4 µ2. No callosal neurons were observed in layer I. These account for 6 and 7% of total numbers of callosal neurons of area AI in layers II and IV. Callosal neurons were found to form projections to all layers of area AI in the contralateral hemisphere. Highest density of callosal fiber endings was observed in layers II and III.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 249–256, March–April, 1990.  相似文献   

19.
It has been shown that in animals with an intact corpus callosum the influence of photic interference is mainfested above all in EP depression. The degree of EP depression is directly dependent on the strength of the interference and is in inverse relationship with the strength of the determined stimulus. Against the background of a weak interference an other effect is possible in some cases, i.e. facilitation of the EP. These facts are interpreted as a result of postresponse subnormality of neurones and as excitation summation respectively. Section of the corpus callosum results in a weakening of the depressing effect of the photic interference on the EP appearing in response to a determined stimulus, and in an enhanced facilitating influence of weak photic interferences. A stronger influence of binocular photic interference as compared with the monocular one was observed in intact and callosotomized animals. A conclusion has been reached that the split brain has a stronger interference resistance as compared with the intact one.  相似文献   

20.
On the postlateral gyrus of the cat striate cortex the cells' preferred orientation and the location of their receptive fields was measured as a function of cortical depth in penetrations as parallel as possible to the radiating fibres. In most penetrations the majority of infragranular cells showed orientation preferences 45 degrees-90 degrees different from the preferred orientations of supragranular cells. In addition, aggregate receptive fields from the same eye of supra- and infragranular cells were spatially shifted against each other. Using different columnar models these results are discussed in terms of spatial contrast enhancement for two parallel mechanisms in upper and lower layers, determined for pattern discrimination and movement detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号