首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of calcium ions on the rate of pyrocatechol autoxidation at pH 9.0 has been studied by mathematical modeling. The effect of Ca2+ on the oxygen absorption rate has been studied, and a kinetic model has been suggested, which takes different stages of interaction of pyrocatechol and its radical form with oxygen into account. It has been shown that the prooxidant action of Ca2+ is related to an abrupt increase (approximately by three orders of magnitude) in the rate constant of comproportionation (reaction of chain branching and formation of o-semiquinonates) and a marked decrease (by two orders of magnitude, from 1.4 · 107 to 0.6 · 105 M−1 s−1) in the rate constant of disproportionation of o-semiquinones. The system can be used as a model for studying the prooxidant action of calcium ions.  相似文献   

2.
Calcium ion binding to phospholipase A2 and its zymogen has been studied by 43Ca NMR. The temperature dependence of the band shape of the calcium-43 NMR signal has been used to calculate the calcium ion exchange rate. The on-rate was calculated to be 5 X 10(6) M-1 s-1, which is 2 orders of magnitude less than the diffusion limit of the hydrated Ca2+ ion in water. The 43Ca quadrupole coupling constant for calcium ions bound to phospholipase, chi = 1.4 MHz, is significantly larger than those found for EF-hand proteins, indicating a less symmetric site. For prophospholipase A2, we found chi = 0.8 MHz, indicating a calcium binding site, which is somewhat more symmetric than the EF-hand sites. The dependence of the 43Ca NMR band shape on the calcium ion concentration showed that there are two cation binding sites on the phospholipase A2 molecule: K1 = 4 X 10(3) M-1 and K2 = 20 M-1. The strong site was found to be affected by a pKa = 6.5 and the weak site by pKa = 4.5.  相似文献   

3.
When intact rat heart mitochondria were pulsed with 150 nmol of CaCl2/mg of mitochondrial protein, only a marginal stimulation of the rate of oxygen consumption was observed. This result was obtained with mitochondria isolated in either the presence or absence of nagarse. In contrast, rat liver mitochondria under similar conditions demonstrated a rapid, reversible burst of respiration associated with energy-linked calcium accumulation. Direct analysis of calcium retention using 45Ca and Millipore filtration indicated that calcium was accumulated by heart mitochondria under the above conditions via a unique energy-dependent process. The rate of translocation by heart mitochondria was less than that of liver mitochondria; likewise the release of bound calcium back into the medium was also retarded. These results suggest that the slower accumulation and release of calcium is characteristic of heart mitochondria. The amound of calcium bound was independent of penetrant anions at low calcium concentrations. Above 100 nmol/mg of mitochondrial protein, the total calcium bound was increased by the presence of inorganic phosphate. Under nonrespiring conditions, a biphasic Scatchard plot indicative of binding sites with different affinities for Ca2+ was observed. The extrapolated constants are 7.5 nmol/mg bound with an apparent half-saturation value of 75 muM and 42.5 nmol/mg bound with half-saturation at 1.15 mM. The response of the reduced State 4 cytochrome b to pulsed additions of Ca2+ was used to calculate an energy-dependent half-saturation constant of 40 muM. When the concentration of free calcium was stabilized at low levels with Ca2+-EGTA buffers, the spectrophotometrically determined binding constant decreased two orders of magnitude to an apparent affinity of 4.16 X 10(-7) M. Primary of calcium transport over oxidative phosphorylation was not observed with heart mitochondria. The phosphorylation of ADP competed with Ca2+ accumulation, depressed the rates of cation transport, and altered the profile of respiration-linked H+ movements. Consistent with these result was the observation that with liver mitochondrial the magnitude of the cytochrome b oxidation-reduction shift was greater for Ca2+ than for ADP, whereas calcium responses never surpassed the ADP response in heart mitochondria. Furthermore, Mg2+ ingibited calcium accumulation by heart mitochondria while having only a slight effect upon calcium transport in liver mitochondria. The unique energetics of heart mitochondrial calcium transport are discussed relative to the regulated flux of cations during the cardiac excitation-relaxation cycle.  相似文献   

4.
During the excitation of muscle the estimated rate of Ca2+ release from sarcoplasmic reticulum may increase 10(3)- to 10(4)-fold compared with relaxed muscle or isolated sarcoplasmic reticulum in vitro, implying a major change in the calcium permeability of the sarcoplasmic reticulum membrane. As a first step in the assessment of the role of various membrane constituents in the regulation of calcium fluxes, the contribution of phospholipids to the definition of calcium permeability was studied in model systems. The rate of calcium release from vesicles prepared from pure phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositides, cardiolipin, and extracted microsomal lipids is in the range of 10(-15) to 10(18) mol of calcium/cm2/s. This rate is several orders of magnitude lower than the passive calcium outflux from isolated sarcoplasmic reticulum membranes. The permeability to Ca2+ is influenced by fatty acid composition and net charge and it is markedly increased with increasing temperature or after the addition of local anesthetics.  相似文献   

5.
Calcium binding to bone gamma-carboxyglutamic acid protein (BGB) from calf has been studied using 43Ca NMR. The temperature dependence of the 43Ca NMR signal has been used to calculate the calcium ion exchange rate, koff. The dependence of the 43Ca NMR band shape on the [Ca2+]/[BGP] ratio fits well to a chemical equilibrium model having a single Ca2+-binding site with an association constant in the range of 5 X 10(3)-1 X 10(5) M-1. The pH dependence of the 43Ca NMR line-width shows a single apparent pKa value of 5.1.  相似文献   

6.
Kinetics of nucleotide and metal ion interaction with G-actin   总被引:4,自引:0,他引:4  
The kinetics of interaction of Ca2+ ions and nucleotides with G-actin have been investigated by making use of the enhancement of 1,N6-ethenoadenosine 5'-triphosphate (epsilon ATP) fluorescence on binding to actin, the enhancement of 2-[[2-[bis(carboxymethyl)amino]-5-methylphenoxy] methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline (Quin-2) fluorescence on binding to Ca2+, and the sensitivity of the fluorescence of an N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-AEDANS) group on Cys-374 to metal ion binding. It is concluded that metal ion dissociation is the rate-limiting step in nucleotide dissociation (0.016 s-1 for Ca2+ at pH 7.2 and 21 degrees C) and that earlier conclusions that metal ion release is relatively fast and subsequent nucleotide release slow are incorrect. Results presented here and obtained by others on the metal ion concentration dependence of the effective rate of nucleotide exchange can be interpreted in the light of this conclusion in terms of a limiting rate which corresponds to that of metal ion release and an "apparent" dissociation constant for Ca2+ which is without direct physical significance. This apparent dissociation constant is more than 2 orders of magnitude greater than the real dissociation constant of Ca2+ from the Ca-actin-ATP complex, which was estimated to be 2 X 10(-9) M from a titration with Quin-2. Confirmation that the rate of Ca2+ release is rate limiting both in nucleotide dissociation reactions and in replacement of Ca2+ by Mg2+ was obtained with 1,5-AEDANS-actin, since both the replacement of Ca2+ by Mg2+ and the removal of Ca2+ to give the actin-ATP complex occurred at the same (slow) rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The kinetics of calcium dissociation from two groups of site-specific mutants of calbindin D9k--a protein in the calmodulin superfamily with two Ca2+ sites and a tertiary structure closely similar to that of the globular domains of troponin C and calmodulin--have been studied by stopped-flow kinetic methods, using the fluorescent calcium chelator Quin 2, and by 43Ca NMR methods. The first group of mutants comprises all possible single, double, and triple neutralizations of three particular carboxylate groups (Glu-17, Asp-19, and Glu-26) that are located on the surface of the protein. These carboxylates are close to the two EF-hand calcium binding sites, but are not directly liganded to the Ca2+ ions. Conservative modification of these negative carboxylate side chains by conversion to the corresponding amides results in a marked reduction in the Ca2+ binding constants for both sites, as recently reported [Linse et al. (1988) Nature 335, 651-652]. The stopped-flow kinetic results show that this reduction in Ca2+ affinity derives primarily from a reduction in the Ca2+ association rate constant, kon. The estimated maximum value of the association rate constant (kon(max) for Ca2+ binding to the wild-type protein is ca. 10(9) M-1 s-1. In contrast, for the mutant protein with three charges neutralized the maximum association rate constant is estimated to be only 2 X 10(7) M-1 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have recently shown the presence of receptors for 1,25-dihydroxyvitamin D3 and that 1,25-dihydroxyvitamin D3 stimulates Ca-ATPase in vascular smooth muscle cells presumably via receptor mediated mechanism. These data suggest that the sterol may directly be involved in the regulation of cellular calcium homeostasis. To further define action of vitamin D in smooth muscle cells, we studied effect of the sterol on cellular uptake of calcium. 1,25-dihydroxyvitamin D3 stimulated 45Ca2+ uptake by cultured cells, A7r5, derived from fetal rat aorta, when the cells were incubated with the sterol for 18 hr. The effect was dose-dependent at 10(-10) to 10(-9) M, and three orders of magnitude higher concentration of 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3 was needed to obtain similar effects. Furthermore, the effect of 1,25-dihydroxyvitamin D3 was abolished by cycloheximide (10(-5) M), a protein synthesis inhibitor. These data clearly suggest that 1,25-dihydroxyvitamin D3 may directly regulate cellular calcium homeostasis in vascular smooth muscle cells presumably via receptor mediated mechanism.  相似文献   

9.
A M Hanel  W P Jencks 《Biochemistry》1991,30(47):11320-11330
The internalization of 45Ca by the calcium-transporting ATPase into sarcoplasmic reticulum vesicles from rabbit muscle was measured during a single turnover of the enzyme by using a quench of 7 mM ADP and EGTA (25 degrees C, 5 mM MgCl2, 100 mM KCl, 40 mM MOPS.Tris, pH 7.0). Intact vesicles containing either 10-20 microM or 20 mM Ca2+ were preincubated with 45Ca for approximately 20 s and then mixed with 0.20-0.25 mM ATP and excess EGTA to give 70% phosphorylation of Etot with the rate constant k = 300 s-1. The two 45Ca ions bound to the phosphoenzyme (EP) become insensitive to the quench with ADP as they are internalized in a first-order reaction with a rate constant of k = approximately 30 s-1. The first and second Ca2+ ions that bind to the free enzyme were selectively labeled by mixing the enzyme and 45Ca with excess 40Ca, or by mixing the enzyme and 40Ca with 45Ca, for 50 ms prior to the addition of ATP and EGTA. The internalization of each ion into loaded or empty vesicles follows first-order kinetics with k = approximately 30 s-1; there is no indication of biphasic kinetics or an induction period for the internalization of either Ca2+ ion. The presence of 20 mM Ca2+ inside the vesicles has no effect on the kinetics or the extent of internalization of either or both of the individual ions. The Ca2+ ions bound to the phosphoenzyme are kinetically equivalent. A first-order reaction for the internalization of the individual Ca2+ ions is consistent with a rate-limiting conformational change of the phosphoenzyme with kc = 30 s-1, followed by rapid dissociation of the Ca2+ ions from separate independent binding sites on E approximately P.Ca2; lumenal calcium does not inhibit the dissociation of calcium from these sites. Alternatively, the Ca2+ ions may dissociate sequentially from E approximately P.Ca2 following a rate-limiting conformational change. However, the order of dissociation of the individual ions can not be distinguished. An ordered-sequential mechanism for dissociation requires that the ions dissociate much faster (k greater than or equal to 10(5) s-1) than the forward and reverse reactions for the conformational change (k-c = approximately 3000 s-1). Finally, the Ca2+ ions may exchange their positions rapidly on the phosphoenzyme (kmix greater than or equal to 10(5) s-1) before dissociating. A Hill slope of nH = 1.0-1.2, with K0.5 = 0.8-0.9 mM, for the inhibition of turnover by binding of Ca2+ to the low-affinity transport sites of the phosphoenzyme was obtained from rate measurements at six different concentrations of Mg2+.  相似文献   

10.
Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site.  相似文献   

11.
The fluorescence of the cation auramine O was substantially enhanced by the presence of actin monomer. Titrations of this fluorescence enhancement indicated that actin monomer had two auramine O binding sites, each with a dissociation constant of approx. 20 microM. Calcium ions had no effect on the number of actin monomer-bound auramine O molecules or on the dissociation constant for that interaction. However, calcium ions increased the maximum change of fluorescence that occurs when actin monomer was fully saturated with auramine O. This effect of calcium was saturable and yielded a Ca2+ dissociation constant of 1.6 mM. It was concluded that auramine O bound to sites on actin monomer and independently monitored the binding of Ca2+ ion(s) to other site(s) on actin monomer. Further, the magnitude of the Ca2+ dissociation constant suggested that this Ca2+-binding site may be representative of the multiple bivalent cation-binding sites on actin monomer which are thought to be directly involved in actin polymerization. However, the exact relationship between these sites remains unclear.  相似文献   

12.
The mechanism of the sarcoplasmic reticulum Ca2+-ATPase was investigated at low temperatures (0 to -12 degrees C). Transient states of the enzyme were studied by two complementary techniques: intrinsic protein fluorescence and rapid filtration on Millipore filters. Intrinsic fluorescence was used to distinguish conformational states of the protein and to evaluate the rate of conversion between these states. Filtrations were used to measure the evolution of the active sites during the transition; the time resolution was 2-5 s. At sub-zero temperatures this time is shorter than the lifetime of most of the enzymatic states which have been detected. In this paper the mechanism of Ca2+ binding to the protein is investigated in the absence of nucleotides. Two basic experiments are described; (1) Kinetics of calcium binding and dissociation over a wide range of calcium concentration. (2) Kinetics of calcium exchange (45Ca2+ in equilibrium 40Ca2+) at constant concentration. The results obtained in the first series of experiments are consistent with a sequential binding to two interacting Ca2+ binding sites. Calcium ions have very fast access to a site with low apparent affinity (Kd approximately 25 microM). Occupation of this site induces a slow conformational change which increased its apparent affinity and reveals a second site of high apparent affinity. At equilibrium the two sites are not equivalent in terms of rate of exchange. Two different rates were detected k fast greater than 0.2 s-1, k slow approximately 0.015 s-1 at -10 degrees C. Removal of Ca2+ from the fast exchanging site by addition of EGTA accelerates the rate of release of the slow exchanging one. A model is proposed with two interacting Ca2+-binding sites. A set of parameters has been obtained which produces correctly the Ca2+-binding curve and the fluorescence level at equilibrium as well as the rate constants of the calcium-induced fluorescence changes over a very wide range of Ca2+ concentrations (0.02 to 150 microM). The non-equivalence of the two classes of site and the meaning of the initial low-affinity binding are discussed.  相似文献   

13.
Influx of calcium ions cannot control a generatory potential induced by the intraneuronal system because calcium ions enter the cell during impulses. These impulses are the result of problem solving and must not influence directly the generatory potential. Therefore cAMP and not calcium controls the permeability of sodium and potassium channels from the inside of the neuron. However the calcium ions and membrane potential of mitochondria affect the impact of cAMP injections. An increase in the intracellular concentration of free Ca2+ induced by the injection of Ca-EGTA buffer with 5.10(-7) M free Ca2+, electric excitation, uncouplers of oxidative phosphorylation or arsenate leads to an increase of cAMP-dependent depolarization and the inward current. The injection of Ca-EGTA buffer with 10(-5) M free Ca2+ and drop in [Ca2+]in by EGTA as well as generation of impulses after cAMP injection decrease the cAMP effect. As rise in [Ca2+]in activates phosphodiesterase and uncouples oxidative phosphorylation, and vanadate in contrast to arsenate suppresses the cAMP effect, a hypothesis is advanced that activating effect of calcium on cAMP action is associated with neuron deenergization.  相似文献   

14.
In cardiac ventricular myocytes, events crucial to excitation-contraction coupling take place in spatially restricted microdomains known as dyads. The movement and dynamics of calcium (Ca2+) ions in the dyad have often been described by assigning continuously valued Ca2+ concentrations to one or more dyadic compartments. However, even at its peak, the estimated number of free Ca2+ ions present in a single dyad is small (approximately 10-100 ions). This in turn suggests that modeling dyadic calcium dynamics using laws of mass action may be inappropriate. In this study, we develop a model of stochastic molecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) that describes: a), known features of dyad geometry, including the space-filling properties of key dyadic proteins; and b), movement of individual Ca2+ ions within the dyad, as driven by electrodiffusion. The model enables investigation of how local Ca2+ signaling is influenced by dyad structure, including the configuration of key proteins within the dyad, the location of Ca2+ binding sites, and membrane surface charges. Using this model, we demonstrate that LCC-RyR2 signaling is influenced by both the stochastic dynamics of Ca2+ ions in the dyad as well as the shape and relative positioning of dyad proteins. Results suggest the hypothesis that the relative placement and shape of the RyR2 proteins helps to "funnel" Ca2+ ions to RyR2 binding sites, thus increasing excitation-contraction coupling gain.  相似文献   

15.
A surprising effect is the direct action of Ca(2+) on redox reactions of ortho-quinoid compounds. The effect of Ca(2+) on oxidation of the sea urchin pigment 6-ethyl-2,3,5,7,8-pentahydroxy-1,4-naphthoquinone (echinochrome A) has been studied by electron paramagnetic resonance (EPR) spectroscopy, by UV/VIS absorbance spectroscopy, and by measurement of oxygen consumption. Echinochrome A per se reacted with dioxygen only in an alkaline solution; 2,3-semiquinone anion-radical of echinochrome A and superoxide anion-radical were the intermediates of the oxidation. Addition of calcium ions sharply increased the rate of echinochrome A autooxidation at alkaline pH and provoked oxidation at neutral pH. To explain this phenomenon we have focused on changes of the acid-base properties of echinochrome A in the presence of calcium and on stabilization of 2,3-semiquinone anion-radical of echinochrome A by Ca(2+). Dissociation constants (pK(a1), pK(a2), and pK(a3)) of echinochrome A determined by potentiometric titration were 5.20, 6.78, and >10 in calcium-free solution and 5.00, 6.10, and 7.15 in the presence of Ca(2+). We have found that Ca(2+) forms an insoluble adduct with the 2,3-semiquinone anion-radical. Thus, the effect of redox-inert calcium on the free radical reactions could be explained (i) by additional deprotonation of echinochrome A and (ii) by formation of a Ca(2+)-naphtho-2,3-semiquinone complex (calcium semiquinonate). Additionally, we have shown that the dried red spines from Strongylocentrotus intermedius possess paramagnetic properties; the EPR signal of the natural spines was similar to that of calcium semiquinonate obtained in our artificial chemical system.  相似文献   

16.
The association constants for the formation of the binary complexes of rabbit fast skeletal muscle troponin subunits have been determined for three solution conditions: (a) 1 mM CaCl2, (b) 3 mM MgCl2 and 1 mM EGTA, and (c) 2 mM EDTA. The subunits were labeled with extrinsic fluorescence probes, either 5-(iodoacetamido)eosin (IAE) or dansylaziridine (DANZ), and the binding was detected by enhancement or quenching of the probe fluorescence. The association constant for the TnI X TnT (where TnI and TnT are the inhibitory subunit and the tropomyosin-binding subunit, respectively, of troponin) complex was measured with two different probes, IAE-TnI and IAE-TnT. The measured values were not affected by the presence of Ca2+ or Mg2+, and the mean values for the three buffer conditions are, respectively, 8.0 X 10(6) and 9.0 X 10(6) M-1 for the two probes. The association constant for TnC-TnI (where TnC is the Ca2+-binding subunit of troponin) interaction was measured with three probes, IAE-TnC, DANZ-TnC, and IAE-TnI. Values of 1.7 X 10(9), 1.2 X 10(8), and 1.0 X 10(6) M-1 were obtained, respectively, in the presence of calcium ion, in the presence of magnesium ion (no calcium), and in the absence of divalent metal ions. A mean value of 4.0 X 10(7) M-1 was obtained for the association constant of TnC X TnT using DANZ-TnC and IAE-TnC as probes in the presence of calcium or magnesium ions. A value of 4.5 X 10(6) M-1 was obtained in the absence of divalent metal ions. The results show that the presence of magnesium ion in the Ca2+-Mg2+ sites strengthens the TnC-TnI and the TnC-TnT interactions and suggest that the troponin structure would be stabilized. This likely results from the effect of magnesium ion on the Ca2+-Mg2+ domains of TnC. The presence of calcium ion in the Ca2+-specific sites provides an additional binding free energy for the TnC-TnI interaction which presumably reflects the changes in the subunit interactions required for the calcium regulatory switch.  相似文献   

17.
The inhibition of guinea-pig heart (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) by calcium has been studied at pH 7.4, 6.8 and 6.4. 1. A decrease in pH reduced the threshold inhibitory concentration of calcium and the calcium concentration producing an inhibition of 50% of the enzyme activity. 2. Calcium reduced the apparent affinity of the enzyme of Na+, this effect occurred only at pH 7.4. 3. Calcium increased the apparent affinity of the enzyme for K+, this effect was enhanced at acidic pH. 4. Activation of the enzyme by Na+ for a constant Na+ : K+ ratio has been studied at pH 7.4 and at pH 6.8 in the absence and in the presence of 3.10(-4) M Ca 2+; the results of this experiment indicate that Ca2+ effect at pH 7.4 was not influenced by Na+ -- K+ competition and was probably due to a Na+ -- Ca2+ interaction. 5. At pH 7.4, the calcium inhibitory threshold concentration and the concentration producing 50% inhibition were reduced when Na+ was low; at pH 6.8, the calcium inhibition was not markedly modified by the change of Na+ concentration. 6. The Ca2+ -activated ATPase of myosin B which is related to the contractile behaviour of muscle and the Ca2+ -ATPase of the sarcoplasmic reticulum which is related to the ability of this structure to accumulate calcium were activated in a range of calcium concentration producing an inhibition of (Na2+ + K+) -ATPase. The present results indicate that the increase by acidity of the (Na2+ + K+) -ATPase sensitivity to calcium might be due to a suppression of a Na+ -Ca2+ interaction. On the basis of these observations, it is proposed that calcium might inhibit the Na+ -pump during the repolarization phase of the action potential and that, by this effect, it might control cell excitability.  相似文献   

18.
In the experiments conducted with application of an isotopic technique (45Ca2+) on the myometrium cells suspension treated by digitonin solution (0.1 mg/ml) some properties of Ca ions accumulation system in the mitochondria--cationic and substrate specificity as well as effects of Mg2+ and some other bivalent metals ions on the Ca2+ accumulation velocity have been estimated. Ca ions accumulation from the incubation medium containing 3 mM sodium succinate Na, 2 mM Pi (as potassium K(+)-phosphate buffer, pH 7.4 at 37 degrees C), 0.01 mM (40CaCl2 + 45CaCl2) and 100 nM thapsigargin--selective inhibiting agent of endoplasmatic reticulum calcium pump were demonstrated as detected just only in presence of Mg, while not Ni, Co or Cu ions. The increase of Mg2+ concentration from 1 x 10(-6) to 10(-3) M induced the ATP dependent transport activation in the myometrium mitochondria. Under [Mg2+] increase till 40 mM this cation essentially decreased Ca2+ accumulation (by 65% from the maximal value). The optimum for Ca2+ transport in the myometrium cells suspension is Mg2+ 10 mM concentration. Ka activation apparent constant along Mg2+ value (in presence 3 mM ATP and 3 mM sodium succinate) is 4.27 mM. The above listed bivalent metals decreased Mg2+, ATP-dependent accumulation of calcium, values of inhibition apparent constants for ions Co2+, Ni2+ and Cu2+ were--2.9 x 10(-4) M, 5.1 x 10(-5) M and 4.2 x 10(-6) M respectively. For Mg2+, ATP-dependent Ca2+ transport in the uterus myocytes mitocondria a high substrate specificity is a characteristic phenomenon in elation to ATP: GTP, CTP and UTP practically fail to provide for Ca accumulation process.  相似文献   

19.
Within the framework of our studies on hypertension in various rat strains, we have examined the effect of cyclosporin A (CsA) on intracellular calcium signaling under conditions of oxidative stress. For these preliminary experiments, we have chosen isolated hepatocytes of normotensive rats as a model system for the study of the role of intracellular calcium. We used tert-butyl hydroperoxide (t-BHP, 1 mmol x l(-1)) as an prooxidant agent. When compared to the controls, we found increased levels of cytosolic free calcium concentration (Ca2+i) during 120 min incubation. The preincubation of hepatocytes with CsA in the concentration of 0.5 micromol x l(-1)] did not change the physiological level of cytosolic calcium. However, a dual action of CsA on elevated Ca2+i was observed during oxidative injury of hepatocytes: while in the first period of incubation CsA increased Ca2+i, CsA reduced the effect of t-BHP on Ca2+i during the next period of incubation. This indicates the ability of CsA to modify oxidative stress, but further studies are necessary to explain these findings.  相似文献   

20.
The influence of potassium ions on calcium uptake in rat liver mitochondria is studied. It is shown that an increase in K+ and Ca2+ concentrations in the incubation medium leads to a decrease in calcium uptake in mitochondria together with a simultaneous increase in potassium uptake due to the potential-dependent transport of K+ in the mitochondrial matrix. Both effects are more pronounced in the presence of an ATP-dependent K+-channel (K+(ATP)-channel) opener, diazoxide (Dz). Activation of the K+(ATP)-channel by Dz alters the functional state of mitochondria and leads to an increase in the respiration rate in state 2 and a decrease in the oxygen uptake and the rate of ATP synthesis in state 3. The effect of Dz on oxygen consumption in state 3 is mimicked by valinomycin, but it is opposite to that of the classical protonophore uncoupler CCCP. It is concluded that the potential-dependent uptake of potassium is closely coupled to calcium transport and is an important parameter of energy coupling responsible for complex changes in oxygen consumption and Ca2+-transport properties of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号