首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric cell division (ACD) is one of the processes creating the overall diversity of cell types in multicellular organisms. The essence of this process is that the daughter cells exit from it being different from both the parental cell and one another in their ability to further differentiation and specialization. The large bristles (macrochaetae) that are regularly arranged on the surface of the Drosophila adult function as mechanoreceptors, and since their development requires ACD, they have been extensively used as a model system for studying the genetic control of this process. Each macrochaete is composed of four specialized cells, the progeny resulting from several ACDs from a single sensory organ precursor (SOP) cell, which differentiates from the ectodermal cells of the wing imaginal disc in the third-instar larva and pupa. In this paper we review the experimental data on the genes and their products controlling the ACDs of the SOP cell and its daughter cells, and their further specialization. We discuss the main mechanisms determining the time when the cell enters ACD, as well as the mechanisms providing for the structural characteristics of asymmetric division, namely, polar distribution of protein determinants (Numb and Neuralized), orientation of the division spindle relative to these determinants, and unequal segregation of the determinants specifying the direction of daughter cell development.  相似文献   

2.
Asymmetric cell division (ACD) is the basic process which creates diversity in the cells of multi-cellular organisms. As a result of asymmetric cell division, daughter cells acquire the ability to differentiate and specialize in a given direction, which is different from that of their parent cells and from each other. This type of division is observed in a wide range of living organisms from bacteria to vertebrates. It has been shown that the molecular-genetic control mechanism of ACD is evolutionally conservative. The proteins involved in the process of ACD in different kinds of animals have a high degree of homology. Sensory organs—bristles (macrochaetae)—of Drosophila are widely used as a model system for studying the genetic control mechanisms of asymmetric division. Bristles located in an orderly manner on the head and body of the fly play the role of mechanoreceptors. Each of them consists of four specialized cells—offspring of the only sensory organ precursor cell (SOP), which differentiates from the wing imaginal disc at the larval stage of the late third age. The basic differentiation and further specialization of the daughter cells of SOP is an asymmetric division process.  相似文献   

3.
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.  相似文献   

4.
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens.  相似文献   

5.
During Drosophila development, neuroblasts divide to generate progeny with two different fates. One daughter cell self-renews to maintain the neuroblast pool, whereas the other differentiates to populate the central nervous system. The difference in fate arises from the asymmetric distribution of proteins that specify either self-renewal or differentiation, which is brought about by their polarization into separate apical and basal cortical domains during mitosis. Neuroblast symmetry breaking is regulated by numerous proteins, many of which have only recently been discovered. The atypical protein kinase C (aPKC) is a broad regulator of polarity that localizes to the neuroblast apical cortical region and directs the polarization of the basal domain. Recent work suggests that polarity can be explained in large part by the mechanisms that restrict aPKC activity to the apical domain and those that couple asymmetric aPKC activity to the polarization of downstream factors. Polarized aPKC activity is created by a network of regulatory molecules, including Bazooka/Par-3, Cdc42, and the tumor suppressor Lgl, which represses basal recruitment. Direct phosphorylation by aPKC leads to cortical release of basal domain factors, preventing them from occupying the apical domain. In this framework, neuroblast polarity arises from a complex system that orchestrates robust aPKC polarity, which in turn polarizes substrates by coupling phosphorylation to cortical release.Cells use polarity for remarkably diverse functions. In this article, I discuss a polarity that is harnessed to generate daughter cells with different fates. Using polarity to divide asymmetrically addresses several challenges that complex organisms face. The diversification of cell types and tissues that occurs during the development of complex organisms is one such challenge. Drosophila neuroblasts, the subject of this article, undergo repeated symmetry breaking asymmetric cell divisions (ACDs) to populate the central nervous system. In a similar manner in adult organisms, ACDs are important for adult homeostasis, replenishing cells that are turned over during the course of normal physiology (Betschinger and Knoblich 2004).A fundamental aspect of ACD is the production of daughter cells containing distinct fate determinants. To segregate fate determinants, the cell becomes polarized to form mutually exclusive cortical domains, each with a set of fate determinants appropriate for one of the two daughter cells. The cleavage furrow forms at the interface of the two domains, partitioning the fate determinants into the two daughter cells where they function to either self-renew (to keep the progenitor population) or to differentiate (e.g., by changing the pattern of gene expression). One of the unique features of the symmetry breaking that occurs during ACD, at least as implemented by the neuroblast, is that it is remarkably dynamic, developing early in mitosis and depolarizing following the completion of cytokinesis.Since the discovery of the first polarized components, neuroblasts have been an excellent model system for investigating the mechanisms of cell polarization and have been extensively analyzed. Although aspects of neuroblast polarity remain unclear, a core framework for how polarity is created and maintained is emerging. In this article, I focus on neuroblast polarity as centered around the activity of atypical protein kinase C, which has emerged as a key regulator of the process. In this framework, neuroblast polarity can be explained by events that polarize aPKC and those that couple aPKC activity to the polarization of fate determinants.  相似文献   

6.
不对称性细胞分裂是一个母细胞通过一次分裂,产生两个不同命运的子细胞的分裂方式,是单细胞生物向多细胞生物进化的关键一步。根据现有的证据推论,不称性细胞分裂是在器官发育过程中产生细胞多样化的一种基本方式。Numb是第一个被发现决定多细胞生物不对称细胞分裂的信号蛋白。在果蝇中,Numb通过促进Notch泛素化拮抗Notch信号通路,从而决定子细胞的命运,后来的研究表明Numb是细胞内吞调节蛋白,并用通过内吞参与调节神经细胞的粘附,轴突的生长及细胞迁移等过程;并且发现Numb与肿瘤抑制基因p53、泛素化蛋白HDM2形成三聚体抑制p53的泛素化,从而调节肿瘤的恶性程度。本文系统地分析了Numb发现的历史及后来在脊椎动物中的作用和机制,重点介绍了Numb在神经发育过程中的功能。  相似文献   

7.
Mechanisms of asymmetric stem cell division   总被引:3,自引:0,他引:3  
Knoblich JA 《Cell》2008,132(4):583-597
Stem cells self-renew but also give rise to daughter cells that are committed to lineage-specific differentiation. To achieve this remarkable task, they can undergo an intrinsically asymmetric cell division whereby they segregate cell fate determinants into only one of the two daughter cells. Alternatively, they can orient their division plane so that only one of the two daughter cells maintains contact with the niche and stem cell identity. These distinct pathways have been elucidated mostly in Drosophila. Although the molecules involved are highly conserved in vertebrates, the way they act is tissue specific and sometimes very different from invertebrates.  相似文献   

8.
Asymmetric cell divisions occur repeatedly during plant development, but the mechanisms by which daughter cells are directed to adopt different fates are not well understood [1,2]. Previous studies have demonstrated roles for positional information in specification of daughter cell fates following asymmetric divisions in the embryo [3] and root [4]. Unequally inherited cytoplasmic determinants have also been proposed to specify daughter cell fates after some asymmetric cell divisions in plants [1,2,5], but direct evidence is lacking. Here we investigate the requirements for specification of stomatal subsidiary cell fate in the maize leaf by analyzing four mutants disrupting the asymmetric divisions of subsidiary mother cells (SMCs). We show that subsidiary cell fate does not depend on proper localization of the new cell wall during the SMC division, and is not specified by positional information acting on daughter cells after completion of the division. Instead, our data suggest that specification of subsidiary cell fate depends on polarization of SMCs and on inheritance of the appropriate daughter nucleus. We thus provide evidence of a role for unequal inheritance of an intracellular determinant in specification of cell fate after an asymmetric plant cell division.  相似文献   

9.
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.  相似文献   

10.
细胞不对称分裂是多细胞生物发育的基础。细胞不对称分裂的重要特征是细胞命运决定子在细胞分裂期间的不对称分离。细胞不对称分裂一般要经历4个步骤:在细胞中建立一个极性轴;沿此轴定向并形成纺锤体;细胞命运决定子沿极性轴作极性分布;细胞分裂后,不同的细胞命运决定子指导决定细胞的不同命运。  相似文献   

11.
One mechanism to generate daughter cells with distinct fates is the asymmetric inheritance of regulatory proteins, leading to differential gene regulation in the daughter cells. This mode of cell division is termed 'asymmetric cell division.' The nervous system of the fly employs asymmetric cell division, both in the central nervous system, to generate neural precursors, neurons and glial cells; and in the peripheral nervous system, to create sensory organs that are composed of multiple cell types. These cell lineages are excellent models to examine the gene expression program that leads to fate acquisition, the cell-fate determinants that control these programs and how these determinants, in turn, are distributed through cell polarity machinery.  相似文献   

12.
Asymmetric division occurs widely in different groups of organisms from single-celled to insects, mammals, and plants. The operation of asymmetrical division may differ widely in different organisms. In multicellular organisms, asymmetrical division is one of the essential features of stem cell biology. The data obtained assume one of the main biological functions of asymmetrical division to be maintenance of cell viability, beginning with stem cells. Cells continuously accumulate toxic inclusions, which are formed by damaged proteins which cannot be degraded by proteasomes. As a result of asymmetric division, these inclusions segregate into one of the daughter cells providing the ability of long-lived proliferation to another cell.  相似文献   

13.
14.
15.
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.  相似文献   

16.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.  相似文献   

17.
Cell division is generally thought to be a process that produces an exact copy of the mother cell by precisely replicating its genomic DNA, doubling organelles, and segregating them into two cells. Many cell types from bacteria to human cells divide asymmetrically, however, to generate daughter cells with distinct characteristics. Such asymmetric divisions are fundamental to the lifespan of a cell, to embryonic development, and to stem cell homeostasis. Asymmetric division requires coordination of cellular asymmetry and the cell division machinery. Accumulating evidence suggests that the basic molecular mechanisms that govern this process are conserved from yeast to humans. In this review we highlight similarities in the mechanisms of asymmetric cell division in yeast and Drosophila male germline stem cells (GSCs) in the hope of extracting common themes underlying several systems.  相似文献   

18.
Asymmetric division is a fundamental mechanism of generating cell diversity during development. One of its hallmarks is asymmetric localization during mitosis of proteins that specify daughter cell fate. Studies in Drosophila show that subcellular localization of many proteins required for asymmetric division of neuronal progenitors correlates with progression through mitosis. Yet, how cell cycle and asymmetric division machineries cooperate remains unclear. Recent data show that (1) key cell cycle regulators are required for asymmetric localization of cell fate determinants and for cell fate determination and (2) molecules that mediate asymmetric division can also act to modulate proliferation potential of progenitor cells.  相似文献   

19.
During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal.  相似文献   

20.
Lin W  Pan Y 《Molecular microbiology》2011,82(6):1301-1304
The mechanism by which prokaryotic cells organize and segregate their intracellular organelles during cell division has recently been the subject of substantial interest. Unlike other microorganisms, magnetotactic bacteria (MTB) form internal magnets (known as magnetosome chain) for magnetic orientation, and thus face an additional challenge of dividing and equipartitioning this magnetic receptor to their daughter cells. Although MTB have been investigated more than four decades, it is only recently that the basic mechanism of how MTB divide and segregate their magnetic organelles has been addressed. In this issue of Molecular Microbiology, the cell cycle of the model magnetotactic bacterium, Magnetospirillum gryphiswaldense is characterized by Katzmann and co-workers. The authors have found that M. gryphiswaldense undergoes an asymmetric cell division along two planes. A novel wedge-like type of cellular constriction is observed before separation of daughter cells and magnetosome chains, which is assumed to help cell cope with the magnetic force within the magnetosome chain. The data shows that the magnetosome chain becomes actively recruited to the cellular division site, in agreement with the previous suggestions described by Staniland et al. (2010), and the actin-like protein MamK is likely involved in this fast polar-to-midcell translocalization. With the use of cryo-electron tomography, an arc-shaped Z ring is observed near the division site, which is assumed to trigger the asymmetric septation of cell and magnetosome chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号