首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acquisition of the complement inhibitor vitronectin (Vn) is important for the respiratory tract pathogen nontypeable Haemophilus influenzae (NTHi) to escape complement‐mediated killing. NTHi actively recruits Vn, and we previously showed that this interaction involves Protein E (PE). Here we describe a second Vn‐binding protein, a 30 kDa Yersinia YfeA homologue designated as Protein F (PF). An isogenic NTHi 3655Δhpf mutant devoid of PF displayed a reduced binding of Vn, and was consequently more sensitive to killing by human serum compared with the wild type. Surface expression of PF on Escherichia coli conferred binding of Vn that resulted in a serum resistant phenotype. Molecular analyses revealed that the N‐terminal of PF (Lys23‐Glu48) bound to the C‐terminal of Vn (Phe352‐Ser374) without disrupting the inhibitory role of Vn on the membrane attack complex. The PF–Vn complex actively delayed C9 deposition on PF‐expressing bacteria. Comparative studies of binding affinity and multiple mutants demonstrated that both PE and PF contribute individually to NTHi serum survival. PF was highly conserved and ubiquitously expressed in a series of randomly selected NTHi clinical isolates (n = 18). In conclusion, the multifaceted binding of Vn is beneficial for NTHi survival in serum and may contribute to successful colonization and consequently infection.  相似文献   

2.
Pathogenic microbes acquire the human plasma protein plasminogen to their surface. In this article, we characterize binding of this important coagulation regulator to the respiratory pathogen nontypeable Haemophilus influenzae and identify the Haemophilus surface protein E (PE) as a new plasminogen-binding protein. Plasminogen binds dose dependently to intact bacteria and to purified PE. The plasminogen-PE interaction is mediated by lysine residues and is also affected by ionic strength. The H. influenzae PE knockout strain (nontypeable H. influenzae 3655Δpe) bound plasminogen with ~65% lower intensity as compared with the wild-type, PE-expressing strain. In addition, PE expressed ectopically on the surface of Escherichia coli also bound plasminogen. Plasminogen, either attached to intact H. influenzae or bound to PE, was accessible for urokinase plasminogen activator. The converted active plasmin cleaved the synthetic substrate S-2251, and the natural substrates fibrinogen and C3b. Using synthetic peptides that cover the complete sequence of the PE protein, the major plasminogen-binding region was localized to a linear 28-aa-long N-terminal peptide, which represents aa 41-68. PE binds plasminogen and also vitronectin, and the two human plasma proteins compete for PE binding. Thus, PE is a major plasminogen-binding protein of the Gram-negative bacterium H. influenzae, and when converted to plasmin, PE-bound plasmin aids in immune evasion and contributes to bacterial virulence.  相似文献   

3.
Ail, a multifunctional outer membrane protein of Yersinia pestis, confers cell binding, Yop delivery and serum resistance activities. Resistance to complement proteins in serum is critical for the survival of Y. pestis during the septicemic stage of plague infections. Bacteria employ a variety of tactics to evade the complement system, including recruitment of complement regulatory factors, such as factor H, C4b‐binding protein (C4BP) and vitronectin (Vn). Y. pestis Ail interacts with the regulatory factors Vn and C4BP, and Ail homologs from Y. enterocolitica and Y. pseudotuberculosis recruit factor H. Using co‐sedimentation assays, we demonstrate that two surface‐exposed amino acids, F80 and F130, are required for the interaction of Y. pestis Ail with Vn, factor H and C4BP. However, although Ail‐F80A/F130A fails to interact with these complement regulatory proteins, it still confers 10,000‐fold more serum resistance than a Δail strain and prevents C9 polymerization, potentially by directly interfering with MAC assembly. Using site‐directed mutagenesis, we further defined this additional mechanism of complement evasion conferred by Ail. Finally, we find that at Y. pestis concentrations reflective of early‐stage septicemic plague, Ail weakly recruits Vn and fails to recruit factor H, suggesting that this alternative mechanism of serum resistance may be essential during plague infection.  相似文献   

4.
Modulation of vitronectin receptor binding by membrane lipid composition.   总被引:5,自引:0,他引:5  
The vitronectin (Vn) receptor belongs to the integrin family of proteins and although its biochemical structure is fully characterized little is known about its binding affinity and specificity. We report here that Vn receptor binding to different matrix proteins is influenced by the surrounding lipid composition of the membrane. Human placenta affinity purified Vn receptor was inserted into liposomes of different composition: (i) phosphatidylcholine (PC); (ii) PC+phosphatidylethanolamine (PE); (iii) PC+PE+phosphatidylserine (PS) + phosphatidylinositol (PI) + cholesterol (chol). The amount of purified material that could be incorporated into the three lipid vesicle preparations was proportional to the efficiency of the vesicle formation that increased from PC (38%) to PC+PE and PC+PE+PS+PI+chol (about 50%) vesicles. Electron microscopy analysis showed that the homogeneity and size of the three liposome preparations were comparable (20-nm diameter) but their binding capacity to a series of substrates differed widely. Vn receptor inserted in PC liposomes bound only Vn, but when it was inserted in PC+PE and PC+PE+PS+PI+chol liposomes it also attached to von Willebrand factor (vWF) and fibronectin (Fn). Vn receptor had higher binding capacity for substrates when it was inserted in PC+PE+PS+PI+chol than PC+PE liposomes. Antibodies to Vn receptor blocked Vn receptor liposome binding to Vn, vWF, and Fn. The intrinsic emission fluorescence spectrum of the Vn receptor reconstituted in PC+PE+PS+PI+chol liposomes was blue-shifted in relation to PC liposomes, suggesting a conformational change of the receptor in the membranes. These data provide direct evidence that the Vn receptor is "promiscuous" and can associate with Vn, vWF and Fn. The nature of the membrane lipid composition surrounding the receptor could thus influence its binding affinity, possibly by changing its conformation or exposure or both.  相似文献   

5.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.  相似文献   

6.
Non-typable Haemophilus influenzae (NTHi) is an important human-specific respiratory pathogen colonizing the mucosa of the upper respiratory tract. The bacterium is a common cause of acute otitis media in children and exacerbations in patients with chronic obstructive pulmonary disease (COPD). An immunoglobulin (Ig) D-lambda myeloma protein was found to detect a 16 kDa surface protein that we designated protein E (PE). The pe gene was cloned using an NTHi genomic DNA library, and a truncated PE-derived protein lacking the endogenous signal peptide (PE22-160) was synthesized and produced in large amounts in Escherichia coli. Interestingly, PE was expressed at the bacterial surface of NTHi as revealed by flow cytometry using the IgD-lambda myeloma protein or PE-specific polyclonal antibodies. A PE-deficient NTHi mutant was produced and lost 50% of its adhesive capacity as compared to the wild-type counterpart when analysed for adhesion to type II lung alveolar epithelial cells. In parallel, E. coli expressing full-length PE1-160 adhered significantly more efficiently to epithelial cells as compared to wild-type E. coli. Recombinant IgD that recognized the chemical dansyl-chloride did not interact with PE indicating that the IgD-lambda myeloma protein most likely was an antibody directed against the H. influenzae surface epitope. In conclusion, we have discovered a novel NTHi outer membrane protein with adhesive properties using an IgD-myeloma protein.  相似文献   

7.
UapA, a member of the NAT/NCS2 family, is a high affinity, high capacity, uric acid-xanthine/H+ symporter in Aspergillus nidulans. Determinants critical for substrate binding and transport lie in a highly conserved signature motif downstream from TMS8 and within TMS12. Here we examine the role of TMS1 in UapA biogenesis and function. First, using a mutational analysis, we studied the role of a short motif (Q85H86), conserved in all NATs. Q85 mutants were cryosensitive, decreasing (Q85L, Q85N, Q85E) or abolishing (Q85T) the capacity for purine transport, without affecting physiological substrate binding or expression in the plasma membrane. All H86 mutants showed nearly normal substrate binding affinities but most (H86A, H86K, H86D) were cryosensitive, a phenotype associated with partial ER retention and/or targeting of UapA in small vacuoles. Only mutant H86N showed nearly wild-type function, suggesting that His or Asn residues might act as H donors in interactions affecting UapA topology. Thus, residues Q85 and H86 seem to affect the flexibility of UapA, in a way that affects either transport catalysis per se (Q85), or expression in the plasma membrane (H86). We then examined the role of a transmembrane Leu Repeat (LR) motif present in TMS1 of UapA, but not in other NATs. Mutations replacing Leu with Ala residues altered differentially the binding affinities of xanthine and uric acid, in a temperature-sensitive manner. This result strongly suggested that the presence of L77, L84 and L91 affects the flexibility of UapA substrate binding site, in a way that is necessary for high affinity uric acid transport. A possible role of the LR motif in intramolecular interactions or in UapA dimerization is discussed.  相似文献   

8.
Pathogenic microbes acquire human complement inhibitors to circumvent the innate immune system. In this study, we identify two novel host-pathogen interactions, factor H (FH) and factor H-like protein 1 (FHL-1), the inhibitors of the alternative pathway that binds to Hib. A collection of clinical Haemophilus influenzae isolates was tested and the majority of encapsulated and unencapsulated bound FH. The isolate Hib 541 with a particularly high FH-binding was selected for detailed analysis. An increased survival in normal human serum was observed with Hib 541 as compared with the low FH-binding Hib 568. Interestingly, two binding domains were identified within FH; one binding site common to both FH and FHL-1 was located in the N-terminal short consensus repeat domains 6-7, whereas the other, specific for FH, was located in the C-terminal short consensus repeat domains 18-20. Importantly, both FH and FHL-1, when bound to the surface of Hib 541, retained cofactor activity as determined by analysis of C3b degradation. Two H. influenzae outer membrane proteins of approximately 32 and 40 kDa were detected with radiolabeled FH in Far Western blot. Taken together, in addition to interactions with the classical, lectin, and terminal pathways, H. influenzae interferes with the alternative complement activation pathway by binding FH and FHL-1, and thereby reducing the complement-mediated bactericidal activity resulting in an increased survival. In contrast to incubation with active complement, H. influenzae had a reduced survival in FH-depleted human serum, thus demonstrating that FH mediates a protective role at the bacterial surface.  相似文献   

9.
Vitronectin (Vn) is a multifunctional glycoprotein profusely present in serum and bound to epithelial cell surfaces. It plays an important role in cell migration, tissue repair and regulation of membrane attack complex (MAC) formation. In the last decade the role of Vn has been extensively investigated in eukaryotic signalling and cell migration leading to the possibility of developing novel anticancer drugs. In parallel, several studies have suggested that pathogens utilize Vn in invasion of the host. Here we review the properties of Vn and its role in host-pathogen interactions that might be a future target for therapeutic intervention.  相似文献   

10.
The Gram-positive bacterium Streptococcus pneumoniae is a major human pathogen that causes infections ranging from acute otitis media to life-threatening invasive disease. Pneumococci have evolved several strategies to circumvent the host immune response, in particular the complement attack. The pneumococcal glycolytic enzyme phosphoglycerate kinase (PGK) is both secreted and bound to the bacterial surface and simultaneously binds plasminogen and its tissue plasminogen activator tPA. In the present study we demonstrate that PGK has an additional role in modulating the complement attack. PGK interacted with the membrane attack complex (MAC) components C5, C7, and C9, thereby blocking the assembly and membrane insertion of MAC resulting in significant inhibition of the hemolytic activity of human serum. Recombinant PGK interacted in a dose-dependent manner with these terminal pathway proteins, and the interactions were ionic in nature. In addition, PGK inhibited C9 polymerization both in the fluid phase and on the surface of sheep erythrocytes. Interestingly, PGK bound several MAC proteins simultaneously. Although C5 and C7 had partially overlapping binding sites on PGK, C9 did not compete with either one for PGK binding. Moreover, PGK significantly inhibited MAC deposition via both the classical and alternative pathway at the pneumococcal surface. Additionally, upon activation plasmin(ogen) bound to PGK cleaved the central complement protein C3b thereby further modifying the complement attack. In conclusion, our data demonstrate for the first time to our knowledge a novel pneumococcal inhibitor of the terminal complement cascade aiding complement evasion by this important pathogen.  相似文献   

11.
Complement evasion by various mechanisms is important for microbial virulence and survival in the host. One strategy used by some pathogenic bacteria is to bind the complement inhibitor of the classical pathway, C4b-binding protein (C4BP). In this study, we have identified a novel interaction between nontypeable Haemophilus influenzae (NTHi) and C4BP, whereas the majority of the typeable H. influenzae (a-f) tested showed no binding. One of the clinical isolates, NTHi 506, displayed a particularly high binding of C4BP and was used for detailed analysis of the interaction. Importantly, a low C4BP-binding isolate (NTHi 69) showed an increased deposition of C3b followed by reduced survival as compared with NTHi 506 when exposed to normal human serum. The main isoform of C4BP contains seven identical alpha-chains and one beta-chain linked together with disulfide bridges. Each alpha-chain is composed of eight complement control protein (CCP) modules and we have found that the NTHi 506 strain did not interact with rC4BP lacking CCP2 or CCP7 showing that these two CCPs are important for the binding. Importantly, C4BP bound to the surface of H. influenzae retained its cofactor activity as determined by analysis of C3b and C4b degradation. Taken together, NTHi interferes with the classical complement activation pathway by binding to C4BP.  相似文献   

12.
Encapsulated Haemophilus influenzae is a causative agent of invasive disease, such as meningitis and septicemia. Several interactions exist between H. influenzae and the human host. H. influenzae has been reported to bind IgD in a nonimmune manner, but the responsible protein has not yet been identified. To define the binding site on IgD for H. influenzae, full-length IgD and four chimeric IgDs with interspersed IgG sequences and Ag specificity for dansyl chloride were expressed in stably transfected Chinese hamster ovary cells. The binding of recombinant IgD to a panel of encapsulated H. influenzae serotype b (Hib) and nontypeable strains were investigated using a whole cell ELISA and flow cytometry. IgD binding was detected in 50% of the encapsulated Hib strains examined, whereas nontypeable H. influenzae did not interact with IgD. Finally, mapping experiments using the chimeric IgD/IgG indicated that IgD CH1 aa 198-224 were involved in the interaction between IgD and H. influenzae. Thus, by using recombinant IgD and chimeras with defined Ag specificity, we have confirmed that Hib specifically binds IgD, and that this binding involves the IgD CH1 region.  相似文献   

13.
Vitronectin inhibits the membrane attack complex of the complement system and is found both in plasma and the extracellular matrix. In this study, we have identified the outer membrane protein Haemophilus surface fibrils (Hsf) as the major vitronectin-binding protein in encapsulated H. influenzae type b. A H. influenzae mutant devoid of Hsf showed a significantly decreased binding to both soluble and immobilized vitronectin as compared with the wild-type counterpart. Moreover, Escherichia coli-expressing Hsf at the surface strongly adhered to immobilized vitronectin. Importantly, the H. influenzae Hsf mutant had a markedly reduced survival as compared with the wild-type bacterium when incubated with normal human serum. A series of truncated Hsf fragments were recombinantly manufactured in E. coli. The vitronectin binding regions were located within two separate binding domains. In conclusion, Hsf interacts with vitronectin and thereby inhibits the complement-mediated bactericidal activity, and thus is a major H. influenzae virulence factor.  相似文献   

14.
The long pentraxin 3 (PTX3) is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP). A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.  相似文献   

15.
HI1506 is a 128-residue hypothetical protein of unknown function from Haemophilus influenzae. It was originally annotated as a shorter 85-residue protein, but a more detailed sequence analysis conducted in our laboratory revealed that the full-length protein has an additional 43 residues on the C terminus, corresponding with a region initially ascribed to HI1507. As part of a larger effort to understand the functions of hypothetical proteins from Gram-negative bacteria, and H. influenzae in particular, we report here the three-dimensional solution NMR structure for the corrected full-length HI1506 protein. The structure consists of two well-defined domains, an alpha/beta 50-residue N-domain and a 3-alpha 32-residue C-domain, separated by an unstructured 30-residue linker. Both domains have positively charged surface patches and weak structural homology with folds that are associated with RNA binding, suggesting a possible functional role in binding distal nucleic acid sites.  相似文献   

16.
Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix, interacts with complement C9. This interaction may modulate innate immunity. Details of Vn–C9 interactions are limited. Vn–C9 interactions were assessed by employing a goat homologous system and observing Vn binding to C9 in three different assays. Using recombinant fragments, C9 binding was mapped to the N‐terminus of Vn. Site directed mutagenesis was performed to alter the second arginine glycine aspartic acid (RGD) sequence (RGD‐2) of Vn. Changing R to G or D to A in RGD‐2 caused significant decrease in Vn binding to C9 whereas changing of R to G in the first RGD motif (RGD‐1) had no effect on Vn binding to C9. These results imply that the RGD‐2 of goat Vn is involved in C9 binding. In a competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 was also evaluated in terms of bacterial pathogenesis. Serum dependent inhibition of Escherichia coli growth was significantly reverted when Vn or its N‐fragment were included in the assay. The C‐fragment, which did not support C9 binding, also partly nullified serum‐dependent inhibition of bacterial growth, probably through other serum component(s).  相似文献   

17.
异色瓢虫卵黄蛋白单克隆抗体的制备及鉴定   总被引:1,自引:0,他引:1  
马卓  刘廷辉  陈洁  梁超  曹美琳  何运转 《昆虫学报》2015,58(11):1186-1193
【目的】为了能准确地追踪异色瓢虫Harmonia axyridis (Pallas)卵黄原蛋白(vitellogenin, Vg)的合成、转运途径和吸收方式,以及卵黄蛋白(vitellin, Vn)在卵母细胞内的积累及分布情况,本研究对异色瓢虫的Vn进行了单克隆抗体(monoclonal antibody, McAb)的制备。【方法】以异色瓢虫Vn免疫BLAB/C小鼠,应用杂交瘤技术,经过3次亚克隆筛选,制备能稳定分泌抗Vn的单克隆抗体。【结果】实验获得4株能够稳定分泌抗异色瓢虫Vn的单克隆抗体,即5E2, 5E11, 1E9和5H8。其中1E9, 5E11和5E2亚型均为IgG1,5H8亚型为IgM。Western blot免疫印迹分析显示,4株单克隆抗体可以特异性地识别Vn,而与雄虫血淋巴无反应。其中,5E2和1E9可以与异色瓢虫抗原的4个亚基发生较强的免疫反应,结合腹水制备前上清效价检测结果最终选取5E2制备单克隆抗体。5E2单克隆抗体的效价为1∶81 000,SDS-PAGE分析显示5E2重链和轻链的分子量分别为50和27 kD。【结论】本实验成功制备出一株能够稳定分泌抗异色瓢虫Vn的单克隆抗体,为建立酶联免疫吸附试验(ELISA)方法测定其动态变化奠定了基础。  相似文献   

18.
Human C7 is one of four homologous complement proteins that self-assemble on the nascent activation-specific fragment, C5b, thus forming the cytolytic membrane attack complex (MAC). In addition to the conserved modular core of the MAC/perforin protein family, C7 has four C-terminal domains comprising a pair of complement control protein modules (CCPs) preceding two Factor-I like modules (FIMs). It is proposed that the C7-CCPs might serve as a molecular arm for delivery of C7-FIMs to their binding site on C5b. Here we present the NMR chemical shift assignments for the C7-CCPs produced as a 14-kDa recombinant protein. Based upon triple-resonance experiments, 98 and 94 % of the backbone and side-chain (1H, 13C and 15N) assignments, respectively, have been completed. The chemical shifts and assignments have been deposited in the BioMagResBank database under accession number 18530.  相似文献   

19.
Site-directed mutagenesis by inverse PCR was done on the HindIII gene. Target residues to be mutated were chosen according to (i) the fact that a mutant obtained by sodium nitrite treatment showed almost no HindIII activity, where Asp-123 was replaced with Asn, and (ii) the model proposed by Stahl et al. (Stahl, F., Wende, W., Jeltsch, A. and Pingoud, A. Biol. Chem. 379, 467-473 (1998)). Seven kinds of mutants were obtained by the PCR, and their enzymatic and biochemical properties were examined. Three mutants, P50S, D108L, and D123N, showed fairly low HindIII activity. On the other hand, the other four, P84Q, E86K, V106E, and K125N, retained the activity. In particular, E86K showed higher activity than the wild enzyme. This fact was confirmed when activities of the purified wild and E86K enzymes were assayed. These results coincided fairly well with data using E. coli strains that carry the respective mutant plasmids, on their resistance to phage T7 and on growth rate. We conclude that the PE motif at residues 50 and 51, and DXK motif at residues 108-110, are responsible for the enzymic reaction of HindIII.  相似文献   

20.
Monoclonal antibodies (Mab) with specificity for protein I (PI) from Neisseria gonorrhoeae (GC) were examined for bactericidal activity. Mab 4G5 (gamma 3), ID3 (gamma 2a), and 1G6 (gamma 2a) bound to surface-exposed epitopes on PI of GC strain R11 (IA serotype) as assessed by co-agglutination and 125I protein A uptake. Mab 2H1 (gamma 3) that were directed against IB serotype strains and Mab 2E9 (gamma 2a) were negative in co-agglutination and protein A uptake assays and served as controls for some experiments. Only 4G5 and 1D3 were bactericidal for R11 when presensitized organisms were incubated in 10% absorbed, pooled normal human serum (PNHS) or 10% hypogammaglobulinemic serum (H gamma S) despite binding of nearly equivalent numbers of 4G5, 1D3, and 1G6 to R11 during presensitization, as assessed by 125I-protein A uptake. These Mab activated complement to a similar extent on GC R11, leading to deposition of 56.4 X 10(3), 61.9 X 1093), and 47.1 X 10(3) molecules of C3/organism during incubation in 10% C8-deficient serum. Deposition occurred almost exclusively via the classical complement pathway. Measurement of complement component C9 binding to R11 during incubation in H gamma S showed 35,700 molecules of C9/organism with 4G5, 32,600 C9/organism with 1D3, and surprisingly, 29,600 C9/organism with 1G6. Eight thousand four hundred molecules of C9/organism bound to 2E9-coated organisms, 6000 C9/organism to 2H1-coated bacteria, and 3600 C9/organism to nonpresensitized organisms. The C5b-9 complex deposited by 4G5 had a different sedimentation profile by sucrose density gradient analysis from the C5b-9 complex deposited by 1G6, consistent with a different molecular configuration of the bound complex. Mab 1G6 and 1D3, but not 2E9 or 2H1, were able to compete with 125I-4G5 for binding to GC R11. A Mab (2E6) directed against protein III of GC competed weakly with 125I-4G5 for binding to GC R11. Mab 1G6, but not 1D3, blocked 4G5-dependent killing in a dose-related fashion. Both 4G5 and IG6 reacted weakly with native PI of GC R11 by immunoblotting, but neither Mab recognized the 34,800 m.w. fragment of PI generated by trypsin and chymotrypsin treatment of outer membranes. In contrast, 2E9 reacted strongly by immunoblot with both native and cleaved PI of GC R11, suggesting binding to buried determinants of PI. These experiments show that Mab directed against identical or closely associated, surface-exposed epitopes on gonococcal PI differ markedly in bactericidal activity, despite leading to deposition of nearly equivalent numbers of C3 and C9 molecules per organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号