首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.  相似文献   

2.
Khan Z  Ahmad S  Joseph L  Chandy R 《PloS one》2012,7(3):e32952
A nine-year prospective study (2002-2010) on the prevalence of Candida dubliniensis among Candida bloodstream isolates is presented. The germ tube positive isolates were provisionally identified as C. dubliniensis by presence of fringed and rough colonies on sunflower seed agar. Subsequently, their identity was confirmed by Vitek2 Yeast identification system and/or by amplification and sequencing of the ITS region of rDNA. In all, 368 isolates were identified as C. dubliniensis; 67.1% came from respiratory specimens, 11.7% from oral swabs, 9.2% from urine, 3.8% from blood, 2.7% from vaginal swabs and 5.4% from other sources. All C. dubliniensis isolates tested by Etest were susceptible to voriconazole and amphotericin B. Resistance to fluconazole (≥8 μg/ml) was observed in 2.5% of C. dubliniensis isolates, 7 of which occurred between 2008-2010. Of note was the diagnosis of C. dubliniensis candidemia in 14 patients, 11 of them occurring between 2008-2010. None of the bloodstream isolate was resistant to fluconazole, while a solitary isolate showed increased MIC to 5-flucytosine (>32 μg/ml) and belonged to genotype 4. A review of literature since 1999 revealed 28 additional cases of C. dubliniensis candidemia, and 167 isolates identified from blood cultures since 1982. In conclusion, this study highlights a greater role of C. dubliniensis in bloodstream infections than hitherto recognized.  相似文献   

3.
Drug-resistant pathogenic fungi use several families of membrane-embedded transporters to efflux antifungal drugs from the cells. The efflux pump Cdr1 (Candida drug resistance 1) belongs to the ATP-binding cassette (ABC) superfamily of transporters. Cdr1 is one of the most predominant mechanisms of multidrug resistance in azole-resistant (AR) clinical isolates of Candida albicans. Blocking drug efflux represents an attractive approach to combat the multidrug resistance of this opportunistic human pathogen. In this study, we rationally designed and synthesized transmembrane peptide mimics (TMPMs) of Cdr1 protein (Cdr1p) that correspond to each of the 12 transmembrane helices (TMHs) of the two transmembrane domains of the protein to target the primary structure of the Cdr1p. Several FITC-tagged TMPMs specifically bound to Cdr1p and blocked the efflux of entrapped fluorescent dyes from the AR (Gu5) isolate. These TMPMs did not affect the efflux of entrapped fluorescent dye from cells expressing the Cdr1p homologue Cdr2p or from cells expressing a non-ABC transporter Mdr1p. Notably, the time correlation of single photon counting fluorescence measurements confirmed the specific interaction of FITC-tagged TMPMs with their respective TMH. By using mutant variants of Cdr1p, we show that these TMPM antagonists contain the structural information necessary to target their respective TMHs of Cdr1p and specific binding sites that mediate the interactions between the mimics and its respective helix. Additionally, TMPMs that were devoid of any demonstrable hemolytic, cytotoxic, and antifungal activities chemosensitize AR clinical isolates and demonstrate synergy with drugs that further improved the therapeutic potential of fluconazole in vivo.  相似文献   

4.
We report a case of fungemia caused by Candida dubliniensis in a non-HIV infected patient. Multiple cultures of blood performed over a period of 13 days were positive for this recently described yeast species. The C. dubliniensis isolates recovered were susceptible to fluconazole in vitro and the patient responded to intravenous therapy with this antifungal agent. It was possible to differentiate the fungemia caused by C. dubliniensis in this patient from that caused by C. albicans in other patients on the basis of the analysis of the antibody response since the C. dubliniensis-infected patient exhibited a characteristic and specific antibody response against a cell wall component of 160-170 kDa.  相似文献   

5.
Multidrug resistance may pose a serious problem to antifungal therapy. The Candida albicans Cdr2p is one of two ATP-binding cassette (ABC) transporters mediating antifungal resistance in vivo through increased drug efflux. Echinocandins such as caspofungin represent the newest class of antifungals that target cell wall synthesis. We show here by agar plate resistance assays that cross-resistant clinical isolates of C. albicans display high minimal inhibitory concentrations (MICs) to caspofungin when compared with a sensitive ATCC reference strain. Northern analysis and immunoblotting indicate that these isolates also show high levels of CDR1 and CDR2 expression. To determine a possible contribution of Cdr1p or Cdr2p to caspofungin resistance, we have functionally expressed Cdr1p and Cdr2p in appropriate recipient strains of the yeast Saccharomyces cerevisiae. Yeast cells expressing Cdr1p or Cdr2p exhibit cross-resistance to established antifungal drugs such as azoles and terbinafine. However, Cdr2p and, to a much lesser extent, Cdr1p confer caspofungin hyper-resistance when expressed in yeast. Likewise, Cdr2p confers caspofungin resistance when constitutively overexpressed in a drug-sensitive C. albicans strain. We therefore propose that Cdr2p may contribute to clinical candin resistance. Finally, our data suggest that cross-resistance phenotypes of clinical isolates are the consequence of distinct mechanisms that may operate simultaneously.  相似文献   

6.
I Balan  A M Alarco    M Raymond 《Journal of bacteriology》1997,179(23):7210-7218
We report the cloning and functional analysis of a third member of the CDR gene family in Candida albicans, named CDR3. This gene codes for an ABC (ATP-binding cassette) transporter of 1,501 amino acids highly homologous to Cdr1p and Cdr2p (56 and 55% amino acid sequence identity, respectively), two transporters involved in fluconazole resistance in C. albicans. The predicted structure of Cdr3p is typical of the PDR/CDR family, with two similar halves, each comprising an N-terminal hydrophilic domain with consensus sequences for ATP binding and a C-terminal hydrophobic domain with six predicted transmembrane segments. Northern analysis showed that CDR3 expression is regulated in a cell-type-specific manner, with low levels of CDR3 mRNA in CAI4 yeast and hyphal cells, high levels in WO-1 opaque cells, and undetectable levels in WO-1 white cells. Disruption of both alleles of CDR3 in CAI4 resulted in no obvious changes in cell morphology, growth rate, or susceptibility to fluconazole. Overexpression of Cdr3p in C. albicans did not result in increased cellular resistance to fluconazole, cycloheximide, and 4-nitroquinoline-N-oxide, which are known substrates for different transporters of the PDR/CDR family. These results indicate that despite a high degree of sequence conservation with C. albicans Cdr1p and Cdr2p, Cdr3p does not appear to be involved in drug resistance, at least to the compounds tested which include the clinically relevant antifungal agent fluconazole. Rather, the high level of Cdr3p expression in WO-1 opaque cells suggests an opaque-phase-associated biological function which remains to be identified.  相似文献   

7.
The increase in the number of infections caused by Candida species and the consequent use of antifungal agents favours an increase of resistant isolates. The aim of this study was to evaluate the antifungal susceptibility of Candida spp. isolates from patients with different systemic predisposing factors to candidosis. Seventy-nine Candida spp. isolates were assayed for in vitro susceptibility to amphotericin B, fluconazole, 5-flucytosine and itraconazole using the technique proposed by the Clinical and Laboratory Standards Institute (CLSI). Four C. albicans, one C. guilliermondii, four C. parapsilosis and two C. tropicalis isolates were resistant to amphotericin B. Only two isolate was resistant to itraconazole. All the isolates tested were susceptible to fluconazole and flucytosine. It could be concluded that the most efficient drugs against the Candida isolates studied were fluconazole and flucytosine and that all of the antifungal agents used in this study were effective against the Candida spp. isolates tested.  相似文献   

8.
Candida infections are frequently associated with formation of biofilms on artificial medical devices. This work studied variation of cell surface hydrophobicity (CSH) and formation of biofilm in relation to Candida albicans and Candida dubliniensis genotypes and an effect of some conventional antifungal agents on both CSH and biofilm. The 50 isolates of C. albicans and C. dubliniensis were classified into genotypes A, B, C, and D, genotype D being exclusively represented by C. dubliniensis. No significant differences between CSH of genotypes A and B and B and C were observed with respect to cultivation temperature 25 or 37 degrees C. Candida dubliniensis showed increased CSH in comparison with other C. albicans genotypes (p < 0.001) regardless of temperature used. Using XTT reduction assay and dry masses, genotypes B and C showed reduced ability to form biofilm in comparison with genotype A (p < 0.05) and C. dubliniensis (p < 0.001). Fluconazole reduced biofilm in C. albicans genotypes A, B, and C (p < 0.05) but not CSH. The opposite effect was observed in C. dubliniensis. Voriconazole effectively reduced both biofilm formation and CSH in all tested genotypes of C. albicans and C. dubliniensis (p < 0.05).  相似文献   

9.
The increasing diversity of opportunistic fungi causing serious invasive fungal infections (IFI) has been documented. Accurate identification (ID) is important in guiding therapy, determining prognosis for IFIs and in epidemiological surveys. We assessed the utility of PCR-based methods for the ID of yeasts and moulds that either were uncommon, failed conventional ID, or represented unusual biochemical or phenotypic profiles of common species. Among 1,790 viable fungal clinical isolates received during the SENTRY Program in 2010, 322 strains from 40 study sites had ID confirmed by molecular methods. Isolates were previously identified in participant institutions. Yeasts that were not confirmed by morphology on CHROMagar, growth at 45?°C (Candida albicans/dubliniensis), or assimilation of trehalose (C. glabrata) as well as non-Candida yeasts and all moulds were amplified and sequenced using primers amplifying one or more of the following genes: ITS, 28S, β-tubulin (Aspergillus spp.), TEF (Fusarium spp.), IGS (Trichosporon spp.). The isolates selected for molecular ID included 149 isolates of Candida species, 77 of Aspergillus species, 73 non-Candida yeasts, and 23 other moulds (a total of 41 different species). Overall, the ID determined by the submitting site was confirmed for 189 isolates (58.7?%): Aspergillus spp. (64.1?% correct); Candida spp. (60.1?% correct); non-Candida yeasts (58.9?% correct); non-Aspergillus moulds (30.4?% correct). Species with high levels of concordance between conventional and molecular ID included A. fumigatus (95.0 %), C. lusitaniae (100?%), C. dubliniensis (92.3?%), C. kefyr (100?%), and C. neoformans (90.2?%). Only 50.0?% of isolates of C. albicans and 59.1?% of C. glabrata selected due to unusual phenotypic or biochemical features were found to be correctly identified by the submitting site. Molecular methods for the identification of fungal pathogens are an important adjunct to the conventional identification of many less common clinically relevant yeasts and moulds including species of Candida with unusual or erroneous phenotypic or biochemical profiles. Molecular confirmation of fungal identification is essential in epidemiological surveys such as SENTRY.  相似文献   

10.
Candida dubliniensis is a recently described opportunistic fungal pathogen that is closely related to Candida albicans but differs from it with respect to epidemiology, certain virulence characteristics, and the ability to develop fluconazole resistance in vitro. A comparison of C. albicans and C. dubliniensis at the molecular level should therefore provide clues about the mechanisms used by these two species to adapt to their human host. In contrast to C. albicans, no auxotrophic C. dubliniensis strains are available for genetic manipulations. Therefore, we constructed homozygous ura3 mutants from a C. dubliniensis wild-type isolate by targeted gene deletion. The two URA3 alleles were sequentially inactivated using the MPA(R)-flipping strategy, which is based on the selection of integrative transformants carrying a mycophenolic acid resistance marker that is subsequently deleted again by site-specific, FLP-mediated recombination. The URA3 gene from C. albicans (CaURA3) was then used as a selection marker for targeted integration of a fusion between the C. dubliniensis MDR1 (CdMDR1) promoter and a C. albicans-adapted GFP reporter gene. Uridine-prototrophic transformants were obtained with high frequency, and all transformants of two independent ura3-negative parent strains had correctly integrated the reporter gene fusion into the CdMDR1 locus, demonstrating that the CaURA3 gene can be used for efficient and specific targeting of recombinant DNA into the C. dubliniensis genome. Transformants carrying the reporter gene fusion did not exhibit detectable fluorescence during growth in yeast extract-peptone-dextrose medium in vitro, suggesting that CdMDR1 is not significantly expressed under these conditions. Fluconazole had no effect on MDR1 expression, but the addition of the drug benomyl strongly activated the reporter gene fusion in a dose-dependent fashion, demonstrating that the CdMDR1 gene, which encodes an efflux pump mediating resistance to toxic compounds, is induced by the presence of certain drugs.  相似文献   

11.
AIMS: To test the hypothesis that strains of Candida dubliniensis and C. albicans can be differentiated on the basis of polar lipid profiles. METHODS AND RESULTS: Five isolates of C. dubliniensis and six isolates of C. albicans were tested by growth at 45 degrees C, production of chlamydospores on cornmeal agar, colonial colour on CHROMagar Candida medium and assimilation of DL-lactate, alpha-methyl-D-glucoside and xylose. Polar lipids were then extracted from freeze-dried cultures and analysed using fast atom bombardment mass spectrometry. Isolates were grouped by single linkage clustering based on correlation coefficients for strain pairs calculated with carboxylate and phospholipid molecular species distributions. The most intense carboxylate and phospholipid molecular species anions were of m/z 281 (C(18 : 1)) and m/z 515 (PA 23 : 2). Phosphatidylethanolamine and phosphatidylglycerol were the predominant phospholipid families in C. dubliniensis, compared with phosphatidic acid in C. albicans isolates. All of the C. dubliniensis isolates grouped together in one cluster, whereas all of the C. albicans isolates grouped in a separate cluster. CONCLUSIONS: Fast atom bombardment mass spectrometry can differentiate the two species based on analysis of polar lipid distributions. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings demonstrate that C. dubliniensis and C. albicans have distinct polar lipid profiles.  相似文献   

12.
Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida . The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 μg mL−1); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1 , CDR2 , MDR1 , encoding for efflux pumps, and ERG11 , encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly ( P >0.05), probably acting as a Cdrp blocker.  相似文献   

13.
Cell surface hydrophobicity (CSH) status influences virulence of Candida albicans and decreases the susceptibility of yeast cells to phagocytic killing. We tested whether subinhibitory concentrations of fluconazole, which is widely used in the treatment and prophylaxis of candidiasis, affect CSH and the susceptibility of C. albicans to enzymatic digestion by glucanase and to phagocytic killing. Treatment of yeast cells with subinhibitory fluconazole concentrations resulted in greater phagocytosis. This effect was independent of CSH but may be related to increased cell wall porosity resulting from alterations in the cell envelope. The use of subinhibitory concentrations of fluconazole in patients with competent phagocytes may contribute to resistance to candidiasis regardless of yeast CSH status.  相似文献   

14.
Fungal ATP-binding cassette transporter regulation was investigated using Candida glabrata Cdr1p and Pdh1p expressed in Saccharomyces cerevisiae. Rephosphorylation of Pdh1p and Cdr1p was protein kinase A inhibitor-sensitive but responded differentially to Tpk isoforms, stressors, and glucose concentration. Cdr1p Ser(307), which borders the nucleotide binding domain 1 ABC signature motif, and Ser(484), near the membrane, were dephosphorylated on glucose depletion and independently rephosphorylated during glucose exposure or under stress. The S484A enzyme retained half the wild type ATPase activity without affecting azole resistance, but the S307A enzyme was unstable to plasma membrane isolation. Studies of pump function suggested conformational interaction between Ser(484) and Ser(307). An S307A/S484A double mutant, which failed to efflux the Cdr1p substrate rhodamine 6G, had a fluconazole susceptibility 4-fold greater than the Cdr1p expressing strain, twice that of the S307A mutant, but 64-fold less than the control null strain. Stable intragenic suppressors indicative of homodimer nucleotide binding domain 1-nucleotide binding domain 1 interactions partially restored rhodamine 6G pumping and increased fluconazole and rhodamine 6G resistance in the S307A/S484A mutant. Nucleotide binding domain 1 of Cdr1p is a sensor of important physiological stimuli.  相似文献   

15.
Shukla S  Rai V  Saini P  Banerjee D  Menon AK  Prasad R 《Biochemistry》2007,46(43):12081-12090
Candida albicans drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, contributes to multidrug resistance in Candida-infected immunocompromised patients. Previous cell-based assays suggested that Cdr1p also acts as a phospholipid translocator. To investigate this, we reconstituted purified Cdr1p into sealed membrane vesicles. Comparison of the ATPase activities of sealed and permeabilized proteoliposomes indicated that Cdr1p was asymmetrically reconstituted such that approximately 70% of the molecules had their ATP binding sites accessible to the extravesicular space. Fluorescent glycerophospholipids were incorporated into the outer leaflet of the proteoliposomes, and their transport into the inner leaflet was tracked with a quenching assay using membrane-impermeant dithionite. We observed ATP-dependent transport of the fluorescent lipids into the inner leaflet of the vesicles. With approximately 6 molecules of Cdr1p per vesicle on average, the half-time to reach the maximal extent of transport was approximately 15 min. Transport was reduced in vesicles reconstituted with Cdr1p variants with impaired ATPase activity and could be competed out to different levels by a molar excess of drugs such as fluconazole and miconazole that are known to be effluxed by Cdr1p. Transport was not affected by ampicillin, a compound that is not effluxed by Cdr1p. Our results suggest a direct link between the ability of Cdr1p to translocate fluorescent phospholipids and efflux drugs. We note that only a few members of the ABC superfamily of Candida have a well-defined role as drug exporters; thus, lipid translocation mediated by Cdr1p could reflect its cellular function.  相似文献   

16.
Azole antifungals act by inhibiting the activity of a lanosterol demethylase involved in the generation of the ergosterol of the cellular membrane of fungi. These drugs could also have action on other yeast components, like secreted aspartyl proteases. We demonstrate in this study that the in vitro secretion of a metallopeptidase could be modified during the growth of Candida albicans with subinhibitory concentrations of some azoles. Eight isolates of this yeast have been cultivated in presence of MIC, MIC/2 and MIC/4 of voriconazole, fluconazole and itraconazole. The presence of voriconazole and fluconazole decreased the secretion of the metallopeptidase in the culture medium, whereas itraconazole increased this secretion for three isolates. This study points to the fact that some antifungals, given in prophylaxis, could act in an unfavourable way on some potential factors of pathogenicity.  相似文献   

17.
This study evaluated the phenotypic tests used to differentiate Candida albicans from Candida dubliniensis. A total of 55 isolates from vaginal secretions, oral cavity and hemoculture were studied. They were originally identified as C. albicans, based on their morphological and physiological characteristics. These isolates were tested for colony color development on CHROMagar Candida medium, growth at 45 degrees C on Sabouraud Dextrose agar, lipolytic activity on Tween 80 Agar medium and colony morphology and chlamydoconidia formation on Staib agar medium. Of the 55 isolates studied, seven yielded one or more phenotypic characteristics suggestive of Candida dubliniensis. These isolates were tested by PCR with specific primers for Candida dubliniensis and API ID 32. The seven isolates were confirmed as Candida albicans. All of these finding indicate that DNA based tests should be used for definitive identification of Candida dubliniensis.  相似文献   

18.
Our main goal was to determine the prevalence of C. albicans serotypes isolates from blood cultures and identify the presence of C. dubliniensis. We studied 47 strains identified as C. albicans by conventional methods, 28 were isolated from children and 19 from adult patients. The strains were re-identified by standard methods and phenotypic screening as xylose assimilation and growth at 42 degrees C. API ID 32C (bioMérieux) was employed with the C. dubliniensis suspected strains and confirmation was made by molecular fingerprinting using random amplified polymorphic DNA (RAPD). The C. albicans serotype was determined by agglutination with antiserum anti-antigen 6 from cell wall (Candida Check, Iatron Inc., Japan) and the in vitro susceptibilities were evaluated by a microdilution method. From 47 strains, 46 were confirmed as C. albicans, 31 of them (67%) were serotype A. Adult patients presented a high prevalence of serotype A (95%) and children presented a frequency of 52% of the serotype B (p<0.05). We confirmed the identification of C. dubliniensis in one strain isolated from an infant. All serotype B strains were susceptible to fluconazole, itraconazole and amphotericin B. On the other hand, 3% and 6% of serotype A strains were "susceptible dose dependent" to fluconazole and itraconazole, respectively. C. albicans serotype A was predominant in adult candidemia and its distribution was homogenous in children patients. All strains were highly susceptible to antifungals. We report here the first case of C. dubliniensis candidemia in South America.  相似文献   

19.
Using primers derived from a region of the Candida albicans CDR1 (Candida drug resistance) gene that is conserved in other ABC (ATP-binding cassette) transporters, a DNA fragment from a previously unknown CDR gene was obtained by polymerase chain reaction (PCR). After screening a C. albicans genomic library with this fragment as a probe, the complete CDR4 gene was isolated and sequenced. CDR4 codes for a putative ABC transporter of 1490 amino acids with a high degree of homology to Cdr1p, Cdr2p and Cdr3p from C. albicans (62, 59 and 57% amino acid sequence identity, respectively). Cdr4p has a predicted structure typical for cluster I.1 of yeast ABC transporters, characterized by two homologous halves, each comprising an N-terminal hydrophilic domain with consensus sequences for ATP binding and a C-terminal hydrophobic domain with six transmembrane helices. In contrast to the CDR1/CDR2 genes, the genetic structure of the CDR4 gene was conserved in 59 C. albicans isolates from six different patients. Northern hybridization analysis showed that the CDR4 gene was expressed in most isolates, but no correlation between CDR4 mRNA levels and the degree of fluconazole resistance of the isolates was found. In addition, a C. albicans mutant in which both copies of the CDR4 gene were disrupted by insertional mutagenesis was not hypersusceptible to fluconazole as compared to the parent strain. Unlike CDR1 and CDR2, CDR4 does not, therefore, seem to be involved in fluconazole resistance in C. albicans.  相似文献   

20.
To find novel drugs for effective antifungal therapy in candidiasis, we examined disulfiram, a drug used for the treatment of alcoholism, for its role as a potential modulator of Candida multidrug transporter Cdr1p. We show that disulfiram inhibits the oligomycin-sensitive ATPase activity of Cdr1p and 2.5mM dithiothreitol reverses this inhibition. Disulfiram inhibited the binding of photoaffinity analogs of both ATP ([alpha-(32)P]8-azidoATP; IC(50)=0.76 microM) and drug-substrates ([(3)H]azidopine and [(125)I]iodoarylazidoprazosin; IC(50) approximately 12 microM) to Cdr1p in a concentration-dependent manner, suggesting that it can interact with both ATP and substrate-binding site(s) of Cdr1p. Furthermore, a non-toxic concentration of disulfiram (1 microM) increased the sensitivity of Cdr1p expressing Saccharomyces cerevisiae cells to antifungal agents (fluconazole, miconazole, nystatin, and cycloheximide). Collectively these results demonstrate that disulfiram reverses Cdr1p-mediated drug resistance by interaction with both ATP and substrate-binding sites of the transporter and may be useful for antifungal therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号