首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-angle X-ray diffraction patterns of peripheral nerve myelin after modification by either rehydration in various solutions or by chemical treatment have been recorded. These X-ray patterns and the previously reported modified nerve myelin patterns demonstrate that nerve myelin has at least five different states: the normal state, condensed state I and II and separated state I and II. There are two membranes per unit cell in the normal state and in states II whereas there is one membrane per unit cell in states I. Under certain conditions normal nerve can go reversibly into either of states II. With continued treatment the nerve myelin structure moves irreversibly from state II to state I and, once in state I, the nerve myelin layers cannot return to the normal state. Our results demonstrate that there is a reversible transformation between condensed state I and separated state I. Fourier profiles of nerve myelin in the normal state, condensed state I and separated state I are presented.  相似文献   

2.
Ras functions as a molecular switch by cycling between the active GTP-bound state and the inactive GDP-bound state. It is known experimentally that there is another GTP-bound state called state 1. We investigate the conformational changes and fluctuations arising from the difference in the coordinations between the switch regions and ligands in the GTP- and GDP-bound states using a total of 830 ns of molecular-dynamics simulations. Our results suggest that the large fluctuations among multiple conformations of switch I in state 1 owing to the absence of coordination between Thr-35 and Mg2+ inhibit the binding of Ras to effectors. Furthermore, we elucidate the conformational heterogeneity in Ras by using principal component analysis, and propose a two-step reaction path from the GDP-bound state to the active GTP-bound state via state 1. This study suggests that state 1 plays an important role in signal transduction as an intermediate state of the nucleotide exchange process, although state 1 itself is an inactive state for signal transduction.  相似文献   

3.
A.C. Ley  W.L. Butler 《BBA》1980,592(2):349-363
Fluorescence of Porphyridium cruentum in state I (cells equilibrated in light absorbed predominantly by Photosystem I) and in state II (cells equilibrated in light absorbed appreciably by Photosystem II) was examined to determine how the distribution of excitation energy was altered in the transitions between state I and state II. Low temperature emission spectra of cells frozen in state I and state II confirmed that a larger fraction of the excitation energy is delivered to Photosystem II in state I. Low temperature measurements showed that the yield of energy transfer from Photosystem II to Photosystem I was greater in state II and calculations indicated that the photochemical rate constant for such energy transfer was approximately twice as large in state II. Measurements at low temperature also showed that the cross sections and the spectral properties of the photosystems did not change in the transitions between state I and state II. In agreement with predictions made from the parameters measured at low temperature, the action spectra for oxygen evolution measured at room temperature were found to be the same in state I and state II.  相似文献   

4.
Characteristics of state II—state III transitions in the red alga, Porphyra perforata, were studied by measuring the fluorescence time course at room temperature and fluorescence spectra at 77 K. The state II to III transition was induced by system II light and was sensitive to uncouplers of photophosphorylation. This state II to III transition has a dark step(s) that could be easily separated from the light process. A state III to II transition occurred in the dark, but system I light accelerated the transition. The accelerating effect of system I light was not sensitive to uncouplers of photophosphorylation, but was inhibited by the addition of valinomycin + KCl or antimycin A. Compared to state I—state II transitions, the state II—state III transitions occurred more rapidly. The state II to state III transitions are different from the state I to state II transitions in that in state III the activity of photosystem II is changed without having any effect on photosystem I activity (Satoh and Fork, Biochim. Biophys, Acta, in press, 1982). It is suggested that the state II—state III transition represents a mechanism by which the alga can avoid photodamage resulting from absorption of excess light energy by photosystem II.  相似文献   

5.
Recent research suggests that attachment and mindfulness are related, though the nature of this association is unclear. Here we present two studies examining whether there is a causal relationship between state attachment and state mindfulness. Study 1 investigated the effects of experimentally increasing state mindfulness on state attachment security. State mindfulness was successfully enhanced, but this led to no change in state attachment security. Study 2 investigated the effects of experimentally enhancing state attachment security on state mindfulness. State attachment security was successfully enhanced, but this did not lead to any change in state mindfulness. These findings suggest that there is not a direct, immediate causal relationship between state attachment and state mindfulness as a result of brief experimental manipulations. Future research should examine these associations in longer term interventions.  相似文献   

6.
Ras small GTPases undergo dynamic equilibrium of two interconverting conformations, state 1 and state 2, in the GTP-bound forms, where state 2 is recognized by effectors, whereas physiological functions of state 1 have been unknown. Limited information, such as static crystal structures and (31)P NMR spectra, was available for the study of the conformational dynamics. Here we determine the solution structure and dynamics of state 1 by multidimensional heteronuclear NMR analysis of an H-RasT35S mutant in complex with guanosine 5'-(β, γ-imido)triphosphate (GppNHp). The state 1 structure shows that the switch I loop fluctuates extensively compared with that in state 2 or H-Ras-GDP. Also, backbone (1)H,(15)N signals for state 2 are identified, and their dynamics are studied by utilizing a complex with c-Raf-1. Furthermore, the signals for almost all the residues of H-Ras·GppNHp are identified by measurement at low temperature, and the signals for multiple residues are found split into two peaks corresponding to the signals for state 1 and state 2. Intriguingly, these residues are located not only in the switch regions and their neighbors but also in the rigidly structured regions, suggesting that global structural rearrangements occur during the state interconversion. The backbone dynamics of each state show that the switch loops in state 1 are dynamically mobile on the picosecond to nanosecond time scale, and these mobilities are significantly reduced in state 2. These results suggest that multiconformations existing in state 1 are mostly deselected upon the transition toward state 2 induced by the effector binding.  相似文献   

7.
GTP-bound forms of Ras family small GTPases exhibit dynamic equilibrium between two interconverting conformations, "inactive" state 1 and "active" state 2. A great variation exists in their state distribution; H-Ras mainly adopts state 2, whereas M-Ras predominantly adopts state 1. Our previous studies based on comparison of crystal structures representing state 1 and state 2 revealed the importance of the hydrogen-bonding interactions of two flexible effector-interacting regions, switch I and switch II, with the γ-phosphate of GTP in establishing state 2 conformation. However, failure to obtain both state structures from a single protein hampered further analysis of state transition mechanisms. Here, we succeed in solving two crystal structures corresponding to state 1 and state 2 from a single Ras polypeptide, M-RasD41E, carrying an H-Ras-type substitution in residue 41, immediately preceding switch I, in complex with guanosine 5'-(β,γ-imido)triphosphate. Comparison among the two structures and other state 1 and state 2 structures of H-Ras/M-Ras reveal two new structural features playing critical roles in state dynamics; interaction of residues 31/41 (H-Ras/M-Ras) with residues 29/39 and 30/40, which induces a conformational change of switch I favoring its interaction with the γ-phosphate, and the hydrogen-bonding interaction of switch II with its neighboring α-helix, α3-helix, which induces a conformational change of switch II favoring its interaction with the γ-phosphate. The importance of the latter interaction is proved by mutational analyses of the residues involved in hydrogen bonding. These results define the two novel functional regions playing critical roles during state transition.  相似文献   

8.
Low-angle X-ray diffraction patterns have been recorded from frog sciatic nerve in pH solutions of 0.1–13.0. The normal X-ray pattern of frog sciatic nerve in Ringer's solution is maintained at pH 4.0–10.0. In acid pH, 2.5–4.0, and in alkaline pH, 10.0–11.0, the nerve myelin is in the partial swollen state. The partial swollen state and the normal state are reversible. Two physical states, the anomalous swollen state and the condensed state, at acid pH below 2.5 and the separated state at alkaline pH above 12.3 have been identified. These three physical states, the anomalous swollen state, the condensed state and the separated state, are reversible with each other on changing the pH solution but the normal state cannot be regained.  相似文献   

9.
The state transitions of the cyanobacterium Synechococcus sp. PCC 7002 and of three mutant strains, which were impaired in PsaE-dependent cyclic electron transport (psaE(-)), respiratory electron transport (ndhF(-)) and both activities (psaE(-)ndhF(-)), were analyzed. Dark incubation of the wild type and psaE(-) cells led to a transition to state 2, while the ndhF(-) strains remained in state 1 after dark incubation. The ndhF(-) cells adapted to state 2 when the cells were incubated under anaerobic conditions or in the presence of potassium cyanide; these results suggest that the ndhF(-) cells were inefficient in performing state 1 to state 2 transitions in the dark unless cytochrome oxidase activity was inhibited. In the state 2 to state 1 transition of wild-type cells induced by light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), there was still a significant reduction of the interphotosystem electron carriers by both respiration and cyclic electron flow around PSI. Kinetic analysis of the state 2 to state 1 transition shows that, in the absence of PSII activity, the relative contribution to the reduced state of the interphotosystem electron carriers by respiratory and cyclic electron transfer is about 72% and 28%, respectively. The state 2 to state 1 transition was prevented by the cytochrome b(6)f inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). On the other hand, the state 1 to state 2 transition was induced by DBMIB with half times of approximately 8 s in all strains. The externally added electron acceptor 2,5-dimethyl-benzoquinone (DMBQ) induced a state 2 to state 1 transition in the dark and this transition could be prevented by DBMIB. The light-induced oxidation of P700 showed that approximately 50% of PSI could be excited by 630-nm light absorbed by phycobilisomes (PBS) under state 2 conditions. P700 oxidation measurements with light absorbed by PBS also showed that the dark-induced state 1 to state 2 transition occurred in wild-type cells but not in the ndhF(-) cells. The possible mechanism for sensing an imbalanced light regime in cyanobacterial state transitions is discussed.  相似文献   

10.
The thermal unfolding transition of equine beta-lactoglobulin (ELG) was investigated by circular dichroism (CD) over a temperature range of -15 degrees C to 85 degrees C. In the presence of 2 M urea, a cooperative unfolding transition was observed both with increasing and decreasing temperature. The CD spectrum indicated that the heat and cold-denatured states of ELG have substantial secondary structures but lack persistent tertiary packing of the side-chains. In order to clarify the relation between the heat or cold-denatured state and the acid-denatured (A) state characterized previously, we have attempted to observe the temperature dependence of the CD spectrum at pH 1.5. The CD spectrum in the heat-denatured state is similar to that in the A state. The CD spectrum in the A state does not change cooperatively with increasing temperature. These results indicate that the heat-denatured state and the A state are the same structural state. On the other hand, the CD intensity at acid pH cooperatively increased with decreasing temperature. The CD spectrum at low temperature and acid pH is consistent with that in the cold-denatured state. Therefore, the cold-denatured state is distinguished from the heat-denatured state or the A state, and ELG assumes a larger amount of non-native alpha-helices in the cold-denatured state. Small angle X-ray scattering and analytical ultracentrifugation have indicated that ELG assumes an expanded chain-like conformation in the cold-denatured state in contrast to the compact globular conformation in the A state. The relation between the molecular size and the helical content in the partially folded states is discussed.  相似文献   

11.
通过对菌紫质D96N基因突变形成的薄膜样品在光照下动态光谱的测定和分析,研究了此样品的光适应型、暗适应型特性及其之间的转化机制。实验证实,样品受光照激发后很快从暗适应型(D态)光适应型(B态)进入光循环,经过一系列的光化学中间体到边较稳定的M态。M态经过约1小时热驰豫完全回到光适应型B态,B态再经过24小时缓慢热驰豫完全回到暗适应型D态。B态受光则进入光循环,不受光则转化为D态,从而认为B态是菌紫质光循环路径中一个重要的分支节点。据此,提出了该样品在光照下B,D和M态之间转化的模型。  相似文献   

12.
An intermediate redox state of cytochrome c at alkaline pH, generated upon rapid reduction by sodium dithionite, has been observed by resonance Raman (RR) spectroscopy in combination with the continuous flow technique. The RR spectrum of the intermediate state is reported for excitation both in the (alpha, beta) and the Soret optical absorption band. The spectra of the intermediate state are more like those of the stable reduced form than those of the stable oxidized form. For excitation of 514.5 nm, the most prominent indication of an intermediate state is the wave-number shift of one RR band from 1,562 cm-1 in the stable oxidized state through 1,535 cm-1 in the intermediate state to 1,544 cm-1 in the stable reduced state. For excitation at 413.1 nm, a band, present at 1,542 cm-1 in the stable reduced state but not present in the stable oxidized state, is absent in the intermediate state. We interpret the intermediate species as the state where the heme iron is reduced but the protein remains in the conformation of the oxidized state, with methionine-80 displaced as sixth ligand to the heme iron, before relaxing to the conformation of the stable reduced state, with methionine-80 returned as sixth ligand.  相似文献   

13.
Complexes of phi29 DNA polymerase and DNA fluctuate on the millisecond time scale between two ionic current amplitude states when captured atop the α-hemolysin nanopore in an applied field. The lower amplitude state is stabilized by complementary dNTP and thus corresponds to complexes in the post-translocation state. We have demonstrated that in the upper amplitude state, the DNA is displaced by a distance of one nucleotide from the post-translocation state. We propose that the upper amplitude state corresponds to complexes in the pre-translocation state. Force exerted on the template strand biases the complexes toward the pre-translocation state. Based on the results of voltage and dNTP titrations, we concluded through mathematical modeling that complementary dNTP binds only to the post-translocation state, and we estimated the binding affinity. The equilibrium between the two states is influenced by active site-proximal DNA sequences. Consistent with the assignment of the upper amplitude state as the pre-translocation state, a DNA substrate that favors the pre-translocation state in complexes on the nanopore is a superior substrate in bulk phase for pyrophosphorolysis. There is also a correlation between DNA sequences that bias complexes toward the pre-translocation state and the rate of exonucleolysis in bulk phase, suggesting that during DNA synthesis the pathway for transfer of the primer strand from the polymerase to exonuclease active site initiates in the pre-translocation state.  相似文献   

14.
The development of electrostatic interactions during the folding of the N-terminal domain of the ribosomal protein L9 (NTL9) is investigated by pH-dependent rate equilibrium free energy relationships. We show that Asp8, among six acidic residues, is involved in non-native, electrostatic interactions with K12 in the transition state for folding as well as in the denatured state. The perturbed native state pK(a) of D8 (pK(a) = 3.0) appears to be maintained through non-native interactions in both the transition state and the denatured state. Mutational effects on the stability of the transition state for protein (un)folding are often analyzed in respect to change in ground states. Thus, the interpretation of transition state analysis critically depends on an understanding of mutational effects on both the native and denatured state. Increasing evidence for structurally biased denatured states under physiological conditions raises concerns about possible denatured state effects on folding studies. We show that the structural interpretation of transition state analysis can be altered dramatically by denatured state effects.  相似文献   

15.
Simultaneous saccharification and fermentation (SSF) widely used in submerged state could be effective in solid state. Solid state SSF was first compared with solid state separate hydrolysis and fermentation on ethanol production. Ethanol yield using solid state separate hydrolysis and fermentation (SHF) in 5 days was only half of that in solid state SSF in 3 days. In solid state SSF, the ethanol concentration using temperature cycling (10 h at 37 degrees C followed by 15 min at 42 degrees C) was 2 times that using constant 37 degrees C within 72 h, reached 5.2%.  相似文献   

16.
The zero-stress state of a blood vessel has been extensively studied because it is the reference state for which all calculations of intramural stress and strain must be based. It has also been found to reflect nonuniformity in growth and remodeling in response to chemical or physical changes. The zero-stress state can be characterized by an opening angle, defined as the angle subtended by two radii connecting the midpoint of the inner wall. All prior studies documented the zero-stress state or opening angle with no regard to duration of the no-load state. Our hypotheses were that, given the viscoelastic properties of blood vessels, the zero-stress state may have "memory" of prior circumferential and axial loading, i.e., duration of the no-load state influences opening angle. To test these hypotheses, we considered ring pairs of porcine coronary arteries to examine the effect of duration in the no-load state after circumferential distension. Our results show a significant reduction in opening angle as duration of the no-load state increases, i.e., vessels that are reduced to the zero-stress state directly from the loaded state attain much larger opening angles at 30 min after the radial cut than rings that are in the no-load state for various durations. To examine the effect of axial loading, we found similar reductions in opening angle with duration in the no-load from the in situ state, albeit the effect was significantly smaller than that of circumferential loading. Hence, we found that the zero-stress state has memory of both circumferential and axial loading. These results are important for understanding viscoelastic properties of coronary arteries, interpretation of the enormous data on the opening angle and strain in the literature, and standardization of future measurements on the zero-stress state.  相似文献   

17.
Non-linear rate-equilibrium relationships upon mutation or changes in solvent conditions are frequently observed in protein folding reactions and are usually interpreted in terms of Hammond behavior. Here we first give a general overview over the concept of transition state movements in chemical reactions and discuss its application to protein folding. We then show examples for genuine Hammond behavior and for apparent transition state movements caused by other effects like changes in the rate-limiting step of the folding reaction or ground state effects, i.e. structural changes in either the native state or the unfolded state. These examples show that apparent transition state movements can easily be mistaken for Hammond behavior. We describe experimental tests using self- and cross-interaction parameters to distinguish between structural changes in a single transition state following Hammond behavior and apparent transition state movements caused by other effects.  相似文献   

18.
Photochemical activity, measured as energy storage of photosystems I (PSI) and II (PSII) together and individually, is studied in sugar maple (Acer saccharum Marsh.) leaves in the spectral range between 400 and 700 nm in state 1 and state 2. Total photochemical activity remains the same in both state 1 and state 2 between 580 and 700 nm, but it is lower in state 2 between 400 and 580 nm. Both PSI and PSII activities change significantly during the state transition due to the migration of light-harvesting chlorophyll a/b protein complex of PSII (LHCII). In the action spectra of PSI and PSII, peak positions vary depending on the association or dissociation of LHCII, except for the peak at 470 nm in the PSII spectrum. PSII activity is about 3 times higher than or equal to PSI in state 1 or state 2, respectively, over most of the spectrum except in the blue and far-red regions. At 470 nm, PSII activity is 8 or 1.6 times higher than PSI in state 1 or state 2, respectively. The amplitude of LHCII coupling-induced change is the same in both PSI and PSII between 580 and 700 nm, but it is less in PSI than in PSII between 400 and 580 nm, which explains the lower photochemical activity of the leaf in state 2 than in state 1. This may be due to a decrease in energy transfer efficiency of carotenoids to chlorophylls in LHCII when it is associated with PSI.  相似文献   

19.
Unfolding transitions of an intrinsically unstable annexin domain and the unfolded state structure have been examined using multiple approximately 10-ns molecular dynamics simulations. Three main basins are observed in the configurational space: native-like state, compact partially unfolded or intermediate compact state, and the unfolded state. In the native-like state fluctuations are observed that are nonproductive for unfolding. During these fluctuations, after an initial loss of approximately 20% of the core residue native contacts, the core of the protein transiently completely refolds to the native state. The transition from the native-like basin to the partially unfolded compact state involves approximately 75% loss of native contacts but little change in the radius of gyration or core hydration properties. The intermediate state adopts for part of the time in one of the trajectories a novel highly compact salt-bridge stabilized structure that can be identified as a conformational trap. The intermediate-to-unfolded state transition is characterized by a large increase in the radius of gyration. After an initial relaxation the unfolded state recovers a native-like topology of the domain. The simulated unfolded state ensemble reproduces in detail experimental nuclear magnetic resonance data and leads to a convincing complete picture of the unfolded domain.  相似文献   

20.
Cold denaturation is a general phenomenon in globular proteins, and the associated cold-denatured states of proteins have important fundamental and practical significance. Here, we have characterized the cold-denatured state of a beta-hairpin forming peptide, MrH3a, in 8% hexafluoro-2-propanol (HFIP) and the dynamics of its refolding following a laser-induced T-jump. Beta-hairpins constitute an important class of protein structural elements, yet their folding mechanisms are not fully understood. Characterization of MrH3a using NMR, CD, and IR spectroscopies reveals residual structure in the cold-denatured state, in contrast with the highly disordered heat-denatured state. The residual structure in the cold-denatured state comprises relatively compact and solvent protected conformations. Furthermore, we find a substantial acceleration in the rate of folding from the cold-denatured state compared to that of the heat-denatured state. In addition, the cold-denatured state is not populated in 20% HFIP; folding occurs only from the fully unfolded state and is significantly slower. We interpret the acceleration of the folding rate of MrH3a in 8% HFIP as a direct consequence of the collapsed conformations of the cold-denatured state. Finally, there may be some reduction of the loop search cost when starting from the cold-denatured state, since this state may have some of the stabilizing cross-strand interactions already formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号